Vancouver, Canada
Vancouver, Canada

Zymeworks Inc. is a privately held biotechnology company based in Vancouver, British Columbia that develops protein therapeutics for the treatment of cancer as well as for autoimmune and inflammatory diseases. The products are based upon the company's molecular modeling software for optimizing protein structure. In 2014, Zymeworks raised $44 million across various funding rounds according to PitchBook, placing it among the top 10 HealthTech businesses in the world to raise the most capital that year. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

The present invention provides heterodimer pairs that can comprise a first heterodimer and a second heterodimer wherein each heterodimer comprises an immunoglobulin heavy chain or fragment thereof and an immunoglobulin light chain or fragment thereof. At least one of the heterodimers can comprise one or more amino acid modifications in the CH1 and/or CL domains, one or more amino acid modifications in the VH and/or VL domains, or a combination thereof. The modified amino acid(s) can be part of the interface between the light chain and heavy chain and are typically modified to create preferential pairing between each heavy chain and a desired light chain such that when the two heavy chains and two light chains of the heterodimer pair are co-expressed in a cell, the heavy chain of the first heterodimer preferentially pairs with one of the light chains rather than the other. Likewise, the heavy chain of the second heterodimer typically preferentially pairs with the second light chain rather than first.


Compounds having cytotoxic and/or anti-mitotic activity are disclosed. Methods associated with preparation and use of such compounds, as well as pharmaceutical compositions comprising such compounds, are also disclosed. Also disclosed are compositions having the structure: (T)-(L)-(D), wherein (T) is a targeting moiety, (L) is an optional linker, and (D) is a compound having cytotoxic and/or anti-mitotic activity.


Patent
Zymeworks | Date: 2017-08-23

Rationally designed antibodies and polypeptides that comprise multiple Fc region amino acid substitutions that synergistically provide enhanced selectivity and binding affinity to a target Fc receptor are provided. The polypeptides are mutated at multiple positions to make them more effective when incorporated in antibody therapeutics than those having wild-type Fc components.


The invention provides methods and systems of determining biopolymer profiles and correlations between structural units (residues) of a biopolymer based on sampling of the conformational space available to the molecule. The correlations between these structural units can further be used to find networks within a biopolymer such as the coupled residue networks in a protein. The invention also provides for designing and engineering biopolymers including polypeptides, nucleic acids and carbohydrates using the information derived from the conformation clustering and subsequent methods described herein.


The present invention provides a process and methods for producing asymmetric antibodies in a mammalian expression system. The asymmetric antibodies are transiently or stably expressed and in cells that stably express the asymmetric antibody, following a rapid 2-step process of stable pool to clone, a highly pure asymmetric antibody expressing clone can be identified at a success frequency that permits for screening of tens of clones rather than thousands. The asymmetric antibodies are produced at a high titre and with a high level of purity with no contaminating homodimer antibodies following protein A purification with a step yield of near 100%. Typical downstream purification processes employ standard hydrophobic interaction chromatography (HIC) and/or cation exchange (CEX) resins and the antibody is stable within a wide dynamic range of buffer pH (4-8) and within the requirements for manufacturing antibodies for pre-clinical and clinical applications.


Provided herein are monovalent antibody constructs. In specific embodiments is a monovalent antibody construct comprising: an antigen-binding polypeptide construct which monovalently binds an antigen; and a dimeric Fc polypeptide construct comprising a CH3 domain, said construct comprising two monomeric Fc polypeptides, wherein one said monomeric Fc polypeptide is fused to at least one polypeptide from the antigen-binding polypeptide construct. These therapeutically novel molecules encompass monovalent constructs that display an increase in binding density and Bmax (maximum binding at a target to antibody ratio of 1:1) to a target cell displaying said antigen as compared to a corresponding monospecific bivalent antibody construct with two antigen binding regions. Provided herein are methods for creation of monovalent antibody constructs that shows superior effector efficacy as compared to the corresponding bivalent antibody construct at equimolar concentrations. Provided herein are methods for creation of monovalent antibody constructs that unexpectedly inhibit tumor cell growth and can be internalized and show greater efficacy compared to a bivalent antibody construct at equimolar saturating concentrations. Provided are monovalent antibody constructs for the treatment of HER2 expressing diseases.


Patent
Zymeworks | Date: 2016-11-17

Provided herein are multifunctional heteromer proteins. In specific embodiments is a heteromultimer that comprises: at least two monomeric proteins, wherein each monomeric protein comprises at least one cargo polypeptide, attached to a transporter polypeptide, such that said monomeric proteins associate to form the heteromultimer. These therapeutically novel molecules comprise monomers that function as scaffolds for the conjugation or fusion of therapeutic molecular entities resulting in the creation of bispecific or multivalent molecular species.


Patent
Zymeworks | Date: 2016-02-17

Rationally designed antibodies and polypeptides that comprise multiple Fc region amino acid substitutions that synergistically provide enhanced selectivity and binding affinity to a target Fc receptor are provided. The polypeptides are mutated at multiple positions to make them more effective when incorporated in antibody therapeutics than those having wild-type Fc components.


Provided herein are isolated heteromultimers comprising: at least one single domain antigen-binding construct attached to at least one monomer of a heterodimer Fc region; wherein the heterodimer Fc region comprises a variant CH3 domain comprising amino acid mutations that promote the formation of said heterodimer with stability comparable to that of a native Fc homodimer; and wherein said isolated heteromultimer is devoid of immunoglobulin light chains and optionally devoid of immunoglobulin CH1 region. These novel molecules comprise complexes of heterogeneous components designed to alter the natural way antibodies behave and that find use in therapeutics.


Patent
Zymeworks | Date: 2016-01-19

Provided herein are multifunctional heteromultimer proteins. In specific embodiments is a heteromultimer comprising: at least two polypeptide constructs, each polypeptide construct comprising at least one cargo polypeptide attached to a transporter polypeptide, said transporter polypeptides derived from a monomeric native protein such that said monomeric constructs associate to form the heteromultimer and said transporter polypeptides associate to form a quasi-native structure of the monomeric native protein or analog thereof. These therapeutically novel molecules encompass heteromultimers comprising constructs that function as scaffolds for the conjugation or fusion of therapeutic molecular entities (cargo polypeptides) resulting in the creation of bispecific or multivalent molecular species. Provided herein is a method for creation of bispecific or multivalent molecular species.

Loading Zymeworks collaborators
Loading Zymeworks collaborators