Time filter

Source Type

Wang L.,Chinese People's Liberation Army | Wang L.,University of Chinese Academy of Sciences | Cong X.,Zhongyuan Union Stem Cell Bioengineering Co. | Liu G.,Zhongyuan Union Stem Cell Bioengineering Co. | And 11 more authors.
Stem Cells and Development | Year: 2013

This study was designed to assess the safety and efficacy of human umbilical cord mesenchymal stem cells (UC-MSCs) in the treatment of rheumatoid arthritis (RA). In this ongoing cohort, 172 patients with active RA who had inadequate responses to traditional medication were enrolled. Patients were divided into two groups for different treatment: disease-modifying anti-rheumatic drugs (DMARDs) plus medium without UC-MSCs, or DMARDs plus UC-MSCs group (4×107 cells per time) via intravenous injection. Adverse events and the clinical information were recorded. Tests for serological markers to assess safety and disease activity were conducted. Serum levels of inflammatory chemokines/cytokines were measured, and lymphocyte subsets in peripheral blood were analyzed. No serious adverse effects were observed during or after infusion. The serum levels of tumor necrosis factor-alpha and interleukin-6 decreased after the first UC-MSCs treatment (P<0.05). The percentage of CD4+CD25+Foxp3+ regulatory T cells of peripheral blood was increased (P<0.05). The treatment induced a significant remission of disease according to the American College of Rheumatology improvement criteria, the 28-joint disease activity score, and the Health Assessment Questionnaire. The therapeutic effects maintained for 3-6 months without continuous administration, correlating with the increased percentage of regulatory T cells of peripheral blood. Repeated infusion after this period can enhance the therapeutic efficacy. In comparison, there were no such benefits observed in control group of DMARDS plus medium without UC-MSCs. Thus, our data indicate that treatment with DMARDs plus UC-MSCs may provide safe, significant, and persistent clinical benefits for patients with active RA. © 2013 Mary Ann Liebert, Inc.

Loading Zhongyuan Union Stem Cell Bioengineering Co. collaborators
Loading Zhongyuan Union Stem Cell Bioengineering Co. collaborators