Entity

Time filter

Source Type


Jin Z.,Zhejiang Provincial Key Laboratory of Plant Evolutionary and Conservation | Jin Z.,Taizhou University | Li J.,Zhejiang Provincial Key Laboratory of Plant Evolutionary and Conservation | Li J.,Taizhou University | And 2 more authors.
PLoS ONE | Year: 2015

Plant responses to heavy metal contamination may depend on the presence of arbuscular mycorrhizal fungi (AMF). Elsholtzia splendens is an indicator species for the presence of copper (Cu) mines because both its flowering phenology and reproduction are tolerant to heavy metals. To test whether effects of Cu on the flowering phenology and reproduction of E. splendens depend on the presence of AMF, we conducted a factorial experiment with two Cu treatments (with or without Cu addition) crossed with two AMF treatments (with or without AMF inoculation). Without AMF, Cu addition significantly delayed the onset dates, ending dates and peak dates of flowering and decreased flowering duration. However, AMF inoculation reversed the effects of Cu stress, with recovered flowering onset and ending dates and increased the flowering duration. Cu addition significantly decreased inflorescence width and number, inflorescence biomass, vegetative biomass and total seed number, but significantly increased 1000-seed weight. AMF inoculation significantly increased vegetative biomass. Two-way ANOVA results showed that the interactive effects between Cu addition and AMF inoculation were significant on the inflorescence number, vegetative biomass and total seed number. These results indicate that AMF can alleviate the Cu stress on the flowering phenology and reproduction of E. splendens. © 2015 Jin et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


Yang B.,Zhejiang Provincial Key Laboratory of Plant Evolutionary and Conservation | Yang B.,Taizhou University | Li J.,Zhejiang Provincial Key Laboratory of Plant Evolutionary and Conservation | Li J.,Taizhou University | And 4 more authors.
Pakistan Journal of Botany | Year: 2015

Parasitic plants have been identified as potential biological agents to control invasive plants. Understanding the interaction between invasive plants and their novel natural enemies is important for understanding mechanisms underlying plant invasion success and thus taking measures to control invasion. We conducted a factorial experiment to test the interactive effects of nutrient addition (low vs. high) and parasitism (with vs. without Cuscuta australis) on the growth of the invasive Bidens pilosa. Parasitism significantly decreased leaf, stem and root biomass of the host invasive plant, and nutrient addition increased leaf and stem biomass of the host. A synergistic effect of parasitism and nutrient addition was found on stem and leaf biomass of the hosts. Nutrient addition significantly increased vegetative biomass of the parasitic plant and caused a more deleterious effect on the invasive host. Reproductive biomass of the parasitic plant was significantly positively related with net photosynthetic rate, light-utilisation efficiency and apparent carboxylation efficiency. Vegetative biomass and total biomass of the parasitic plants were significantly positively related with specific leaf area and the relative chlorophyll content of the host plant. The deleterious effect of the parasite on the growth of the host plant was significantly positively correlated with vegetative biomass of the parasitic plant. Nutrient addition increased the negative effect of the parasitic plant on the invasive host, indicating that the parasitic plant is potentially a biological control agent for the invasive plant even in the context of changing global resources. © 2015, Pakistan Botanical Society. All rights reserved.

Discover hidden collaborations