Time filter

Source Type

Sun X.,Zhejiang University | Ruan R.,Zhejiang University | Lin L.,Zhejiang Institute of Freshwater Fisheries | Zhu C.,Zhejiang University | And 4 more authors.
FEMS Microbiology Letters | Year: 2013

Penicillium digitatum, causing citrus green mold, is one of the most devastating pathogenic fungi for postharvest fruits. The disease control is becoming less efficient because of the dispersal of fungicide-resistant strains. However, genome-scale analyses of its resistance mechanism are scarce. In this work, we sequenced the whole genome of the R1 genotype strain Pd01-ZJU and investigated the genes and DNA elements highly associated with drug resistance. Variation in DNA elements related to drug resistance between P. digitatum strains was revealed in both copy number and chromosomal location, indicating that their recent and frequent translocation might have contributed to environmental adaptation. In addition, ABC transporter proteins in Pd01-ZJU were characterized, and the roles of typical subfamilies (ABCG, ABCC, and ABCB) in imazalil resistance were explored using real-time PCR. Seven ABC proteins, including the previously characterized PMR1 and PMR5, were induced by imazalil, which suggests a role in drug resistance. In summary, this work presents genome information of the R1 genotype P. digitatum and systematically investigates DNA elements and ABC proteins associated with imazalil resistance for the first time, which would be indicative for studying resistant mechanisms in other pathogenic fungi. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved. Source

Long Y.,CAS Wuhan Institute of Hydrobiology | Li Q.,CAS Wuhan Institute of Hydrobiology | Wang Y.,Zhejiang Institute of Freshwater Fisheries | Cui Z.,CAS Wuhan Institute of Hydrobiology
Comparative Biochemistry and Physiology - C Toxicology and Pharmacology | Year: 2011

Acquired resistance of mammalian cells to heavy metals is closely relevant to enhanced expression of several multidrug resistance-associated proteins (MRP), but it remains unclear whether MRP proteins confer resistance to heavy metals in zebrafish. In this study, we obtained zebrafish (Danio rerio) fibroblast-like ZF4 cells with resistance to toxic heavy metals after chronic cadmium exposure and selection for 6 months. These cadmium-resistant cells (ZF4-Cd) were maintained in 5 μM cadmium and displayed cross-resistance to cadmium, mercury, arsenite and arsenate. ZF4-Cd cells remained the resistance to heavy metals after protracted culture in cadmium-free medium. In comparison with ZF4-WT cells, ZF4-Cd cells exhibited accelerated rate of cadmium excretion, enhanced activity of MRP-like transport, elevated expression of abcc2, abcc4 and mt2 genes, and increased content of cellular GSH. Inhibition of MRP-like transport activity, GSH biosynthesis and GST activity significantly attenuated the resistance of ZF4-Cd cells to heavy metals. The results indicate that some of MRP transporters are involved in the efflux of heavy metals conjugated with cellular GSH and thus play crucial roles in heavy metal detoxification of zebrafish cells. © 2010 Elsevier Inc. Source

Long Y.,CAS Wuhan Institute of Hydrobiology | Li Q.,CAS Wuhan Institute of Hydrobiology | Zhong S.,Wuhan University | Wang Y.,Zhejiang Institute of Freshwater Fisheries | Cui Z.,CAS Wuhan Institute of Hydrobiology
Comparative Biochemistry and Physiology - C Toxicology and Pharmacology | Year: 2011

Multidrug-resistance associated protein 2 (MRP2/ABCC2) plays crucial roles in bile formation and detoxification by transporting a wide variety of endogenous compounds and xenobiotics, but its functions in zebrafish (Danio rerio) remain to be characterized. In this study, we obtained the full-length cDNA of zebrafish abcc2, analyzed its expression in developing embryos and adult tissues, investigated its transcriptional response to heavy metals, and evaluated its roles in efflux of heavy metals including cadmium, mercury and lead. Zebrafish abcc2 gene is located on chromosome 13 and composed of 32 exons. The deduced polypeptide of zebrafish ABCC2 consists of 1567 amino acids and possesses most of functional domains and critical residues defined in human ABCC2. Zebrafish abcc2 gene is not maternally expressed and its earliest expression was detected in embryos at 72 hpf. In larval zebrafish, abcc2 gene was found to be exclusively expressed in liver, intestine and pronephric tubules. In adult zebrafish, the highest expression of abcc2 gene was found in intestine followed by those in liver and kidney, while relative low expression was detected in brain and muscle. Expression of abcc2 in excretory organs including kidney, liver and intestine of zebrafish larvae was induced by exposure to 0.5 μM mercury or 5 μM lead. Moreover, exposure to 0.125-1 μM of mercury or lead also significantly induced abcc2 expression in these excretory organs of adult zebrafish. Furthermore, overexpression of zebrafish ABCC2 in ZF4 cells and zebrafish embryos decreased the cellular accumulation of heavy metals including cadmium, mercury and lead as determined by MRE (metal responsive element)- or EPRE (electrophile response element)-driven luciferase reporters and atomic absorption spectrometry. These results suggest that zebrafish ABCC2/MRP2 is capable of effluxing heavy metals from cells and may play important roles in the detoxification of toxic metals. © 2011 Elsevier Inc. Source

Yang X.,Zhejiang University | Sun J.-Y.,Zhejiang University | Guo J.-L.,Zhejiang Institute of Freshwater Fisheries | Weng X.-Y.,Zhejiang University
Journal of the Science of Food and Agriculture | Year: 2012

Background: Cottonseed meal, an important source of feed raw materials, has limited use in the feed industry because of the presence of the highly toxic gossypol. The aim of the current work was to isolate the gossypol-degrading fungus from a soil microcosm and investigate the proteins involved in gossypol degradation. Results: A fungal strain, AN-1, that uses gossypol as its sole carbon source was isolated and identified as Aspergillus niger. A large number of intracellular proteins were detected using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but no significant difference was observed between the glucose-containing and gossypol-containing mycelium extracts. Two-dimensional gel electrophoresis results showed that the protein spots were concentrated in the 25.0-66.2 kDa range and distributed in different pI gradients. PDQuest software showed that 51 protein spots in the gels were differentially expressed. Of these, 20 differential protein spots, including six special spots expressed in gossypol, were analyzed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Conclusion: The fungus AN-1 biodegraded gossypol and the proteomic analysis results indicate that some proteins were involved in the gossypol biodegradation during fungus survival, using gossypol as its sole carbon source. © 2011 Society of Chemical Industry. Source

Yang X.,Zhejiang University | Guo J.L.,Zhejiang Institute of Freshwater Fisheries | Ye J.Y.,Zhejiang University | Zhang Y.X.,Zhejiang University | Wang W.,Zhejiang University
Fish and Shellfish Immunology | Year: 2015

The present study investigated the effect of Ficus carica polysaccharide (FCP), isolated from the fruit of F. carica L., at 0%, 0.1%, 0.5% and 1.0% doses supplementation with feed on genes Interleukin 1-β (IL-1β), Tumor Necrosis Factor α (TNF-α) and heat shock protein 70 (HSP70) gene expression in blood, humoral innate immune parameters and resistant to Flavobacterium columnare of grass carp at weeks 1, 2 and 3. The results revealed that administration of FCP significantly (P<0.05) up regulated IL-1β and TNF-α gene expression. HSP70 gene expression was significantly (P<0.05) lower in FCP-fed fish at the end of trial. The serum total protein, albumin and globulin did not significantly increased in any diet on the first week whereas it was significantly enhanced in 0.5% and 1.0% supplementation diets on weeks 2 and 3 when compared to control. The serum complement C3 was significantly (P<0.05) increased on weeks 1 and 2 when compared to control, however, no significant difference was found in this activity after 3 weeks of treatment. All diets significantly enhanced the serum lysozyme activity, bactericidal activity from weeks 1-2 as compared to control. Grass carp fed with FCP showed remarkably higher resistance against F.columnare (60% survival) compared to the control group (30% survival). These results confirm that FCP can up regulate immune related genes expression, stimulates immune response that per se enhances disease resistance in grass carp. © 2014 Elsevier Ltd. Source

Discover hidden collaborations