Zhejiang Academy of Agricultural Sciences

Hangzhou, China

Zhejiang Academy of Agricultural Sciences

Hangzhou, China
Time filter
Source Type

Zhejiang Academy of Agricultural Sciences | Date: 2017-06-07

The present invention provides a set of large-scale and high-efficiency fly maggot culture equipment and a large-scale and high-efficiency fly maggot culture process and pertains to fly maggot culture. The equipment comprises at least one culturing workshop with a multi-functional ceiling. At least one feeder traveling along double-row burden distributing rails is arranged in the culturing workshop. A pair of main rails is perpendicularly arranged on the front of one ends of the burden distributing rails. A rail car used for transferring the feeder among different burden distributing rails is arranged on the main rails. Transferring rails horizontally perpendicular to the main rails are arranged on the rails car. The height of the transferring rails is consistent with the height of the distributing rails. The workshop ground between the two rails of the distributing rails form a culturing bed for fly maggot culture. The equipment also includes a central control apparatus connected with an alarm and a fly maggot separator. The equipment and the process provided in this present invention can realize incessant fly maggot flow line culture, without being affected by temperature, and is much highly automatic to realize fly maggot production in large scale and with high effectiveness.

Li J.-Y.,Boyce Thompson Institute for Plant Research | Liu J.,Cornell University | Dong D.,Zhejiang Academy of Agricultural Sciences | Jia X.,Cornell University | And 2 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2014

Mexico, and approved March 14, 2014 (received for review October 16, 2013) Aluminum (Al) toxicity is a major constraint for crop production on acid soils which compose ∼40% of arable land in the tropics and subtropics. Rice is the most Al-tolerant cereal crop and offers a good model for identifying Al tolerance genes and mechanisms. Here we investigated natural variation in the rice Nramp aluminum transporter (NRAT1) gene encoding a root plasma membrane Al uptake transporter previously hypothesized to underlie a unique Al tolerance mechanism. DNA sequence variation in the NRAT1 coding and regulatory regions was associated with changes in NRAT1 expression and NRAT1 Al transport properties. These sequence changes resulted in significant differences in Al tolerance that were found to be associated with changes in the Al content of root cell wall and cell sap in 24 representative rice lines from a rice association panel. Expression of the tolerant OsNRAT1 allele in yeast resulted in higher Al uptake than did the sensitive allele and conferred greater Al tolerance when expressed in transgenic Arabidopsis. These findings indicate that NRAT1 plays an important role in rice Al tolerance by reducing the level of toxic Al in the root cell wall and transporting Al into the root cell, where it is ultimately sequestered in the vacuole. Given its ability to enhance Al tolerance in rice and Arabidopsis, this work suggests that the NRAT1 gene or its orthologs may be useful tools for enhancing Al tolerance in a wide range of plant species.

Zhang J.-M.,Zhejiang Academy of Agricultural Sciences | Chai W.-G.,The Ningbo Academy of Agricultural science | Wu Y.-L.,The Ningbo Academy of Agricultural science
Chemosphere | Year: 2012

The fate of chlorantraniliprole was studied in rice field ecosystem, and a simple and reliable analytical method was developed for determination of chlorantraniliprole in soil, rice straw, paddy water and brown rice. Chlorantraniliprole residues were extracted from samples with acetonitrile. The extract was cleaned up with QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) method, and determined by high-performance liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). The average recoveries were 76.9-82.4% from soil, 83.6-89.3% from rice straw, 95.2-103.1% from paddy water and 84.9-87.7% from brown rice. The relative standard deviation was less than 15%. The limits of detection (LODs) of chlorantraniliprole calculated as a sample concentration (S/N ratio of 3) were 0.012μgL -1 for paddy water, 0.15μgkg -1 for soil, brown rice and rice straw. The results of the kinetics study of chlorantraniliprole residue showed that chlorantraniliprole degradation in soil, water and rice straw coincided with C=0.01939e -0.0434t, C=0.01425e -0.8111t, and C=1.171e -0.198t, respectively; the half-lives were about 16.0 d, 0.85 d and 3.50d, respectively. The degradation rate of chlorantraniliprole in water was the fastest, followed by rice straw. The final residues of chlorantraniliprole on brown rice were lower than maximum residue limit (MRL) of 0.02mgkg -1 after 14d Pre-Harvest Interval (PHI). Therefore, a dosage of 150mL a.i.hm -2 was recommended, which could be considered as safe to human beings and animals. © 2011 Elsevier Ltd.

Wang S.Y.,U.S. Department of Agriculture | Gao H.,U.S. Department of Agriculture | Gao H.,Zhejiang Academy of Agricultural Sciences
LWT - Food Science and Technology | Year: 2013

The severity of decay in strawberries stored at either 5 °C or 10 °C was significantly reduced and the shelf-life was extended by immersing fruits in chitosan solutions of 0.5, 1.0 and 1.5 g/100 mL for 5 min at 20 °C as compared to the control. Strawberries treated with chitosan also maintained better fruit quality with higher levels of phenolics, anthocyanins, flavonoids (ellagic acid, ellagic acid glucoside, p-coumaroyl glucose, quercetin 3-glucoside, quercetin 3-glucuronide, kaempferol 3-glucoside, kaempferol 3-glucuronide, cyanidin 3-glucoside, pelargonidin 3-glucoside, cyanidin 3-glucoside-succinate, and pelargonidin 3-glucoside-succinate), antioxidant enzyme activity [catalase (CAT), glutathione-peroxidase (GSH-POD), guaiacol peroxidase (G-POD), dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDAR)], and oxygen radical absorbance capacity for peroxyl radicals (ROO.), hydroxyl radical radicals (OH; HOSC) and 2,2-Di (4-tert-octylphenyl)-1-picrylhydrazyl (DPPH) than the untreated fruits. Chitosan treatments retarded the decrease of ascorbic acid (ASA) and reduced glutathione (GSH) content and β-1,3-glucanase activities compared to control. The high contents of antioxidants, antioxidant activity, ASA and GSH and high activity of β-1,3-glucanase in the treated strawberries reinforced the microbial defense mechanism of the fruit and accentuated the resistance against fungal invasion. Therefore, the application of chitosan coating could be favorable in extending shelf-life, maintaining quality and controlling decay of strawberries. © 2012.

Liu Q.,Zhejiang Agriculture And forestry University | Zhang H.,Zhejiang Academy of Agricultural Sciences
Journal of Agricultural and Food Chemistry | Year: 2012

Arsenic is highly toxic to living organisms including humans and plants. To investigate the responsive functions of miRNAs under arsenite stress, an indica rice, Minghui 86, has been deeply sequenced, and a total of 67 arsenite-responsive miRNAs were identified in rice seedling roots, of which 5 were further validated experimentally. The potential targets of those differential miRNAs include some transcription factors, protein kinases, and DNA- or metal ion-binding proteins that are associated with cellular and metabolic processes, pigmentation, and stress responses. The regulatory roles of four miRNAs on their targets in response to arsenite were further confirmed by real time RT-PCR. Interestingly, osa-miR6256 was originally characterized as a putative exonic miRNA, supporting the notion that miRNAs may also originate from some exons in plants. The first identification of arsenite-responsive miRNAs at the whole genome-wide level will broaden the current understanding of the molecular mechanisms of arsenite responses in rice. © 2012 American Chemical Society.

Song X.M.,Zhejiang Academy of Agricultural Sciences
Genetics and molecular research : GMR | Year: 2012

The melanocortin-4 receptor (MC4R) has important roles in regulating food intake, energy balance, and body weight in mammals. In pigs and cattle, MC4R mutations have been identified as genetic markers for growth and traits. Compared with abundant research conducted on other livestock species, little is known about mutations of the ovine MC4R gene. We investigated the effect of MC4R polymorphisms on birth weight and on 45-day weaning weight in 144 Hu sheep. Four single nucleotide polymorphisms (SNPs; g.1016 G/A, g.1240 T/C, g.1264 G/A, and g.1325 A/G) were identified in the 3-untranslated region of Hu sheep MC4R by PCR-single-strand conformation polymorphism and DNA sequencing. A haplotype block, containing g.1240 T/C, g.1264 G/A, and g.1325 A/G, was constructed within the Hu sheep MC4R gene. Four SNPs were found to be significantly associated with 45-day weaning weight, while the haplotype block was significantly associated with birth weight. Hu sheep with the genotypes GG in g.1016 G/A or with the genotype CCAAGG in the haplotype block, had higher 45-day weaning weights. We conclude that these 4 SNPs of the MC4R gene have potential as genetic markers for early growth traits in Hu sheep.

Wang H.-J.,Jiangsu University | Chen X.-Y.,Zhejiang Academy of Agricultural Sciences
Journal of Hazardous Materials | Year: 2011

Combination of two kinds of advanced oxidation processes (AOPs) is an effective approach to control wastewater pollution. In this research, a pulsed discharge plasma system with multi-point-to-plate electrode and an immobilized TiO2 photocatalysis system is coupled to oxidize target pollutant in aqueous solution. Kinetic analysis (pseudo-first order kinetic constant, k) and energy efficiency (energy yield value at 50% phenol conversion, G50) of phenol oxidation in different reaction systems (plasma alone and plasma-photocatalysis) are reviewed to account for the synergistic mechanism of plasma and photocatalysis. The experimental results show that higher k and G50 of phenol oxidation can be obtained in the plasma-photocatalysis system under the conditions of different gas bubbling varieties, initial solution pH and radical scavenger addition. Moreover, the investigation tested hydroxyl radical (OH) is the most important species for phenol removal in the synergistic system of plasma-photocatalysis as well as in the plasma alone system. © 2010 Elsevier B.V.

Conventional hybridization and selection techniques have aided the development of new ornamental crop cultivars. However, little information is available on the genetic divergence of bromeliad hybrids. In the present study, we investigated the genetic variability in interspecific hybrids of Aechmea gomosepala and A. recurvata var. recurvata using inflorescence characteristics and sequence-related amplified polymorphism (SRAP) markers. The morphological analysis showed that the putative hybrids were intermediate between both parental species with respect to inflorescence characteristics. The 16 SRAP primer combinations yield 265 bands, among which 154 (57.72%) were polymorphic. The genetic similarity was an average of 0.59 and ranged from 0.21 to 0.87, indicating moderate genetic divergence among the hybrids. The unweighted pair group method with arithmetic average (UPGMA)-based cluster analysis distinguished the hybrids from their parents with a genetic distance coefficient of 0.54. The cophenetic correlation was 0.93, indicating a good fit between the dendrogram and the original distance matrix. The two-dimensional plot from the principal coordinate analysis showed that the hybrids were intermediately dispersed between both parents, corresponding to the results of the UPGMA cluster and the morphological analysis. These results suggest that SRAP markers could help to identify breeders, characterize F(1) hybrids of bromeliads at an early stage, and expedite genetic improvement of bromeliad cultivars.

Xu H.-X.,Zhejiang Academy of Agricultural Sciences | Chen J.-W.,Zhejiang Academy of Agricultural Sciences
Journal of the Science of Food and Agriculture | Year: 2011

BACKGROUND: Modern consumers are increasingly interested in their personal health and expect the food they purchase to be tasty and attractive while being safe and healthful. The aim of this study was to determine the commercial quality, characterise the antioxidant capacity and quantify the major bioactive compounds of 12 cultivars of loquat fruits in order to establish a database for utilising these germplasm resources. RESULTS: Of the 12 cultivars, 'Guanyu' produced the biggest fruits, while 'Tianzhong' and 'Bingtangzhong' had the highest soluble solids content but the lowest titratable acidity. 'Taipinghong' was reddest in colour. Sucrose, fructose, glucose and sorbitol were the major sugars in loquat fruits, with the highest total sugar content being observed in 'Bingtangzhong' and 'Tianzhong'. Phenolics and flavonoids were the main bioactive compounds and were abundant in 'Tianzhong' and 'Zhaozhong'. 'Taipinghong' had the highest total carotenoid content, while 'Qingzhong' had the highest vitamin C content. 'Tianzhong', 'Bingtangzhong' and 'Ninghaibai' showed higher antioxidant activity than the other cultivars, as measured by assays of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis(3-ethylbenzthiozoline-6-sulfonic acid) (ABTS) scavenging and ferric-reducing/antioxidant power (FRAP). CONCLUSION: Commercial fruit quality, major bioactive compound content and antioxidant capacity varied greatly among the 12 cultivars. 'Bingtangzhong' and 'Tianzhong' were the highest-ranking cultivars based on their good commercial quality and high nutritional value. The loquat fruits with higher total phenolic and flavonoid contents also had clearly higher antioxidant capacities. © 2011 Society of Chemical Industry.

Zhang G.W.,Zhejiang Academy of Agricultural Sciences
Journal of Zhejiang University. Science. B | Year: 2013

The development of expressed sequence tag-derived simple sequence repeats (EST-SSRs) provided a useful tool for investigating plant genetic diversity. In the present study, 22 polymorphic EST-SSRs from grain soybean were identified and used to assess the genetic diversity in 48 vegetable soybean accessions. Among the 22 EST-SSR loci, tri-nucleotides were the most abundant repeats, accounting for 50.00% of the total motifs. GAA was the most common motif among tri-nucleotide repeats, with a frequency of 18.18%. Polymorphic analysis identified a total of 71 alleles, with an average of 3.23 per locus. The polymorphism information content (PIC) values ranged from 0.144 to 0.630, with a mean of 0.386. Observed heterozygosity (Ho) values varied from 0.0196 to 1.0000, with an average of 0.6092, while the expected heterozygosity (He) values ranged from 0.1502 to 0.6840, with a mean value of 0.4616. Principal coordinate analysis and phylogenetic tree analysis indicated that the accessions could be assigned to different groups based to a large extent on their geographic distribution, and most accessions from China were clustered into the same groups. These results suggest that Chinese vegetable soybean accessions have a narrow genetic base. The results of this study indicate that EST-SSRs from grain soybean have high transferability to vegetable soybean, and that these new markers would be helpful in taxonomy, molecular breeding, and comparative mapping studies of vegetable soybean in the future.

Loading Zhejiang Academy of Agricultural Sciences collaborators
Loading Zhejiang Academy of Agricultural Sciences collaborators