Entity

Time filter

Source Type

Hangzhou, China

News Article | August 15, 2016
Site: http://www.theenergycollective.com/rss/all

In a totalitarian state, the presence of thousands of anti-nuclear demonstrators in the streets for several days is not only a surprise, it also represents the deep unease people there have about a nuclear energy facility that hasn’t even broken ground. A massive $15 billion effort to build a facility to make MOX fuel was last week the subject of protests involving thousands of people in the city of Lianyungang in Jiangsu Province located about 300 miles (480km) north of Shanghai (YouTube Video). The city is one of six potential sites for the spent fuel reprocessing center to be built in a partnership between China National Nuclear Corp. (CNNC) and Areva. The plant would be built based on the same technology used by Areva at a MOX fuel plant in France. The demonstrators disregarded warnings from the government and police to stop. Protest groups flooded Chinese social media with anti-nuclear slogans. The protests in the streets and online stem from a growing unease over industrial pollution and other environmental issues linked in a part to corrupt practices. The plan for the nuclear reprocessing facility site at this stage involves site selection and no decision has been made yet. Lianyungang city officials short-circuited a response from CNNC by telling the demonstrators they would not allow the plant to be built there. The apparent loss of the site in Lianyungang does not mean the project is on the ropes. There are five other sites in other parts of the country still under consideration. The other sites include locations in the provinces of Shandong, Zhejiang, Fujian, Guangdong, and Gansu. All have existing nuclear facilities and are located at coastal sites. There are two Russian built VVER commercial nuclear reactors at the Tainwan power station in Lianyungang. Two more units are under construction which will be commissioned in 2018 and there are plans on paper to add yet two more units to them. Their presence does not seem to have been a factor in the protests. The protests in Lianyungang occurred on the anniversary of a massive chemical explosion that took place at the Ruihai International Chemical warehouse in the city of Tainjin on August 12, 2015. A reported 173 people were killed and over 800 injured by the blast caused by hundreds of tons of dangerous chemicals illegally stored in the warehouse. The subsequent investigation revealed a complex web of corruption, negligence, lax regulatory oversight, and poor emergency responses services. Cleanup of the site has stalled due to the complex and toxic nature of the residual chemicals and their combustion byproducts. An estimated 470,000 cubic meters of material needs to be removed from the site, but there are few places to put it. This is not the first time protests in China have led to reconsideration of a proposal for a new nuclear facility. In 2013 protests erupted involving over 1,000 peo0ple over plans to build a commercial nuclear fuel plant in Heshan in Guangdong province resulted in the government cancelling that particular site with plans to relocate it. Coincidentally, the nuclear fuel plant that was the subject of these protests includes planned production of commercial fuel assemblies for the VVER units at Lianyungang. The initial plan for the reprocessing plant was first set in motion in 2007 as part of a deal that also resulted in Areva building two 1650 MW EPR reactors in Taishan, China, just west of Hong Kong. Once a site is selected for the reprocessing facility, construction of the 800 tonne per year plant is suppose to start in 2020 and be completed by 2030. Technical details about the plant are more or less complete. During a visit to France in June 2015, China’s premier Li Keqiang called for financial and contractual details to be completed by the end of this year. The La Hague, France, MOX plant, on which the 800 tonne per year Chinese plant will be based, is much larger and is capable of handling 2,700 tonnes per year. As a practical matter, the 800 tonne per year plant is not going to in the short term make a serious dent in the inventory of spent nuclear fuel in China. By 2020 China is expected to have 12,300 tonnes of spent fuel in mostly wet storage though there is some ongoing transition to dry casks. With a service life of about 60 years, the plant could handle at least 40,000-50,000 tonnes of spent fuel. However, China has ambitious plans to build more nuclear power plants which will significantly increase the amount of spent fuel it will have to manage as part of its policy re-using the fuel. Within the first ten years of operation, by 2040, a second reprocessing plant with at least the same capacity would have to be built to handle the load. In the meantime, China may decide to move its spent fuel from wet storage at reactors to an interim site involving dry casks mostly likely located near the first MOX plant. According to the World Nuclear Association, mainland China has 34 nuclear power reactors in operation, 20 under construction, and more about to start construction. Additional reactors are planned, including some of the world’s most advanced, to give a doubling of nuclear capacity to at least 58 GWe by 2020-21, then up to 150 GWe by 2030, and much more by 2050. An English language report published in the South China Morning Post (SCMP) last week indicates that China has an acute shortage of experienced nuclear plant technical staff and that the problem will get worse before it gets better. The SCMP report cites a Chinese language report in China Business News which quotes Prof. Ai Deshang, Dean of Graduate Programs, in the Institute of Nuclear and New Energy Technology, at Tsinghua University, who says China will need 30,000 to 40,000 trained nuclear technicians by the end of the 2020s, but that currently the nation’s universities are only capable of graduating a few hundred individuals per year. The China Business News report also quotes He Yu, President of China General Nuclear (CGN) who said that China plans to build over 100 new reactors by 2030 to meet energy needs and to reduce pollution from coal fired power plants. Staffing of there new reactors will required 50,000 to 80,000 trained staff. The extraordinary pressures on existing experienced reactor staffs are also cited in the report indicating that in at least one instance self-reporting of safety incidents were covered up. A March 2015 pump failure at the Yangiiang Nuclear Power Station in Guangdong province was not made public until May 2016. The environmental ministry reportedly cited four operators over the incident. A spokesman for CGN, which owns and operates the plant, said that it only found out about the failed pump during a inspection which took place this year. The power station is composed of four CPR-1000 reactors three of which have been commissioned and a fourth unit that will come online in 2017. Construction of units 5 & 6, which are slated to be the new Hualong One 1000 MW PWRs, is set to start in 2018. The lack of skilled staff may also impact China’s plans to export its nuclear reactors. China has a pending deal with Argentina to build its new Hualong One reactor there and another deal, which is under review in the UK, to build up to three of them at the Bradwell site near London.


News Article
Site: http://www.greencarcongress.com/

« Penn State team develops highly crumpled nitrogen-doped graphene sheets as high-performance cathode for Li-sulfur batteries | Main | HDBaseT Alliance expands into automotive; GM new Board member; Daimler, Delphi members » Volvo Cars sold 503,127 cars worldwide in 2015, the first time it has sold more than half a million cars in its 89-year history. Volvo reported strong sales from all three core global regions. Sales in Europe rose 10.6% for the year to 269,249 units, representing 53.5% of total global volume. Volvo’s revival in the US gained momentum with sales in the US up 24.3% to 70,047 units in 2015. China was flat amid a challenging sales environment with 81,588 units, but looked stronger at the end of the year with sales up 11.4% in the fourth quarter. Volvo said that its new sales record underscores the strength and sustainability of its ongoing operational and financial transformation. It is also an endorsement of the company’s new product strategy, with global sales boosted in the later stages of 2015 by the new XC90 SUV. The second model in Volvo’s all-new model range—the S90 premium sedan—is being revealed to the public at this year’s North American International Auto Show (NAIAS) in Detroit next week and will go on sale in the US in the Spring. In four years’ time, Volvo will have renewed its entire model range. Volvo plans to continue to revive its operations in the US and develop its global manufacturing footprint. In the medium-term, it intends to continue to grow in China, double its market share in Europe and increase its sales globally to 800,000 cars. In coming years, Volvo’s larger 90 series and 60 series cars will be built on its Scalable Product Architecture (SPA). Volvo will also implement a global small car strategy with its Compact Modular Architecture (CMA). Volvo said it will enhance its position as a global maker of hybrids with a series of four- and three-cylinder hybrid engines. It will also develop an all-electric car. Volvo expects at least 10% of its annual sales to be electrified vehicles in the medium-term. Volvo Cars has made significant progress since being acquired by Zhejiang Geely Holdings in 2010, not least in expanding its manufacturing footprint. With the announcement of its new factory in South Carolina in the US, Volvo now has an industrial presence in all three key global regions: Asia, Europe and the US.


News Article
Site: http://www.nature.com/nature/current_issue/

An hour's drive from Kunming in southwestern China, past red clay embankments and sprawling forests, lies an unusual zoo. Inside the gated compound is a quiet, idyllic campus; a series of grey, cement animal houses stack up on the lush hillside, each with a clear plastic roof to let in the light. This is the Yunnan Key Laboratory of Primate Biomedical Research, and its inhabitants are some 1,500 monkeys, all bred for research. The serenity of the facility belies the bustle of activity within. Since it opened in 2011, this place has quickly become a Mecca for cutting-edge primate research, producing valuable disease models and seminal publications that have made its director, Ji Weizhi, a sought-after collaborator. Its campus houses a collection of gene-edited monkeys that serve as models of Duchenne muscular dystrophy, autism and Parkinson's disease. Ji plans to double the number of group leaders working there from 10 to 20 in the next 3 years, and to seek more international collaborations — he already works with scientists in Europe and the United States. “In terms of a technology platform, Ji is just way ahead,” says one collaborator, cardiologist Kenneth Chien at the Karolinska Institute in Stockholm. Ji is not alone in his ambitions for monkey research. With support from central and local governments, high-tech primate facilities have sprung up in Shenzhen, Hangzhou, Suzhou and Guangzhou over the past decade. Last month, the science ministry approved the launch of a facility at the Kunming Institute of Zoology that is expected to cost millions of dollars to build. These centres can provide scientists with monkeys in large numbers, and offer high-quality animal care and cutting-edge equipment with little red tape. A major brain project, expected to be announced in China soon, will focus much of its efforts on using monkeys to study disease. The enthusiasm stands in stark contrast to the climate in the West, where non-human-primate research is increasingly stymied by a tangle of regulatory hurdles, financial constraints and bioethical opposition. Between 2008 and 2011, the number of monkeys used in research in Europe declined by 28%, and some researchers have stopped trying to do such work in the West. Many have since sought refuge for their experiments in China by securing collaborators or setting up their own laboratories there. Some of the Chinese centres are even advertising themselves as primate-research hubs where scientists can fly in to take advantage of the latest tools, such as gene editing and advanced imaging. “It could be like CERN in Switzerland, where they set up a large facility and then people come from all over the world to get data,” says Stefan Treue, a neuroscientist who heads the German Primate Center in Göttingen, Germany. With China fast becoming a global centre for primate research, some scientists fear that it could hasten the atrophy of such science in the West and lead to a near monopoly, in which researchers become over-reliant on one country for essential disease research and drug testing. “Governments and politicians don't see this, but we face a huge risk,” says Erwan Bezard, who is director of the Institute of Neurodegenerative Diseases at the University of Bordeaux in France, and has set up his own primate-research company, Motac, in Beijing. Europe and the United States still have the lead in primate research, he says, but this could change as expertise migrates eastwards. “China will become the place where all therapeutic strategies will have to be validated. Do we want that? Or do we want to stay in control?” For decades, researchers have relied on monkeys to shed light on brain function and brain disease because of their similarity to humans. Growth in neuroscience research has increased demand, and although high costs and long reproductive cycles have limited the use of these animals in the past, new reproductive technologies and genetic-engineering techniques such as CRISPR–Cas9 are helping researchers to overcome these drawbacks, making monkeys a more efficient experimental tool. China has an abundance of macaques — the mainstay of non-human-primate scientific research. Although the population of wild rhesus macaques (Macaca mulatta) has declined, the number of farmed animals has risen. According to data from the Chinese State Forestry Administration, the number of businesses breeding macaques for laboratory use rose from 10 to 34 between 2004 and 2013, and the quota of animals that those companies could sell in China or overseas jumped from 9,868 to 35,385 over that time. Farm populations of marmosets, another popular research animal, are also on the rise. Most monkeys are shipped to pharmaceutical companies or researchers elsewhere in the world, but the growing appreciation among scientists of monkey models has prompted investment by local governments and private companies in dedicated research colonies. The country's 2011 five-year plan singled out primate disease models as a national goal; the science ministry followed up by pumping 25 million yuan (US$3.9 million) into the endeavour in 2014. Scientists visiting China are generally pleased with the care given to animals in these facilities, most of which have, or are trying to get, the gold-standard recognition of animal care — accreditation by AAALAC International. Ji's Yunnan Key Laboratory is the most active primate facility, but others are giving it competition. The new monkey facility at the Kunming Institute of Zoology was funded as part of the national development scheme for big science equipment that includes telescopes and supercomputers. The money will help the institute to double its colony of 2,500 cynomolgus monkeys (Macaca fascicularis) and rhesus macaques. Zhao Xudong, who runs the primate-research facility, says that the plan is to “set it up like a hospital, with separate departments for surgery, genetics and imaging”, and a conveyer belt to move monkeys between departments. There will be systems for measuring body temperature, heart rate and other physiological data, all to analyse the characteristics, or 'phenotypes', of animals, many of which will have had genes altered. “We are calling it the 'genotype versus phenotype analyser',” says Zhao. It will take ten years to finish, but he hopes to begin building this year and to start research within three. Other facilities, although smaller, are also expanding and diversifying. The Institute of Neuroscience in Shanghai plans to increase its population of 600 Old World monkeys to 800 next year and expand its 300-strong marmoset colony. Outside China, the numbers are heading in the opposite direction. Harvard Medical School closed its affiliated primate facility in May 2015 for 'strategic' reasons. Last December, the US National Institutes of Health decided to phase out non-human-primate experiments at one of its labs and subsequently announced that it would review all non-human-primate research that it funds. In Europe, researchers say, the climate is also growing colder for such research. Costs are a major disincentive. In 2008, Li Xiao-Jiang, a geneticist at Emory University in Atlanta, Georgia, helped to create the world's first transgenic monkey model of Huntington's disease1 with colleagues at Yerkes National Primate Research Centre. But Li says that it costs $6,000 to buy a monkey in the United States, and $20 per day to keep it, whereas the corresponding figures in China are $1,000 and $5 per day. “Because the cost is higher, you have to write a bigger grant, and then the bar will be higher when they judge it,” says Li. Funding agencies “really do not encourage large-animal research”. For Li, the solution was simple: go to China. He now has a joint position at the Institute of Genetics and Developmental Biology in Beijing, where he has access to around 3,000 cynomolgus monkeys at a farm in Guangzhou and some 400 rhesus monkeys at the Chinese Academy of Medical Sciences' monkey facility in Beijing. He has churned out a series of publications on monkeys with modified versions of the genes involved in Duchenne muscular dystrophy2 and Parkinson's disease3. Neuroscientist Anna Wang Roe says that red tape drove her to China. Roe's team at Vanderbilt University in Nashville, Tennessee, is attempting to work out how modules in the brain are connected, and she estimates that she and her colleagues have spent 25% of their time and a good deal of cash documenting the dosage and delivery-method for each drug they administered to their monkeys, as required by regulations. “We record something every 15 minutes,” she says. “It's not that it's wrong. It's just enormously time-consuming.” In 2013, impressed by the collaborative atmosphere at Zhejiang University in Hangzhou, she proposed that it build a neuroscience institute. The next day the university agreed, and she soon had a $25-million, 5-year budget. “Once the decision is made, you can start writing cheques,” she says. She is now closing her US laboratory to be the director of the Zhejiang Interdisciplinary Institute of Neuroscience and Technology, where she hopes to open a suite of the latest brain-analysis tools, including a powerful new 7-tesla functional magnetic resonance imaging device that she says will give images of the primate brain at unprecedented resolution. Bob Desimone was similarly impressed with the speed at which China moves. As a neuroscientist who heads the McGovern Institute for Brain Research at the Massachusetts Institute of Technology in Cambridge, in January 2014, he had a 'meet and greet' with the mayor of Shenzhen. In March, the mayor donated a building on the Shenzhen Institute of Advanced Technology campus for a monkey-research facility, and the centre's soon-to-be director, Liping Wang, promised that it would be ready by summer. Thinking that impossible, Desimone bet two bottles of China's prized mind-numbing liquor, maotai, that it wouldn't be done in time. He lost. The group raised most of the $10 million needed from city development grants, along with a small input from McGovern, and soon the first animals were being installed in the Brain Cognition and Brain Disorder Research Institute. “This place just makes things happen quickly,” Desimone says. But money and monkeys alone are not enough to lead to discovery. Researchers say that China is short on talented scientists to take advantage of the opportunities provided by animal research. That's why the organizers of the country's new primate centres hope to attract an influx of foreigners to permanent posts or as collaborators. So far, many of those moving to China have been Chinese or foreigners with a previous connection to the country, but others are expressing interest, says neuroscientist Guoping Feng, also at the McGovern Institute. Already, the Shenzhen primate centre has recruited from Europe and the United States, and Desimone says that it will be “an open technology base. Anyone who wants to work with monkeys can come.” The rapid spread of CRISPR–Cas9 and TALEN gene-editing tools is likely to accelerate demand for monkey research: they are turning the genetic modification of monkeys from a laborious and expensive task into a relatively quick, straightforward one. Unlike engineered mice, which can be bred and sent around the world, “monkeys are difficult to send, so it will be easier for the PI or postdoc to go there”, says Treue. Already, competition is fierce as researchers are racing for the low-hanging fruit — engineering genes with established roles in human disease or development. Almost all reports of gene-edited monkeys produced with these techniques have come from China. Desimone predicts that the pursuit of monkey disease models “could give China a unique niche to occupy in neuroscience”. The cages of Ji's facility are already full of the products of gene editing. One troop of animals has had a mutation genetically engineered into the MECP2 gene, which has been identified as the culprit in humans with Rett's syndrome, an autism spectrum disorder. An animal sits listless and unresponsive, holding tight to the bars of the cage as her normal twin sister crawls all over her. In another cage, a monkey with the mutation pumps its arm, reminiscent of repetitive behaviour seen in the human disorder. Some incessantly suck their thumbs. “I've never seen that in a monkey before — never so constant,” says Ji. Among the range of other disease models in Ji's menagerie are monkey versions of cardiovascular disease, which he is working on in collaboration with the Karolinska Institute. And last year, Ji made the world's first chimeric monkeys using embryonic stem cells4, an advance that could make the production of genetically modified animals even easier. The question now is whether these genetically modified monkeys will propel understanding of human brain function and dysfunction to a higher level. “You can't just knock out one gene and be sure you'll have human-like disease phenotype,” says Ji. Researchers see an opportunity to understand human evolution as well as disease. Su Bing, a geneticist at the Kunming Institute of Zoology, is working with Ji to engineer monkeys that carry the human version of a gene called SRGAP2, which is thought to endow the human brain with processing power by allowing the growth of connections between neurons. Su also plans to use CRISPR–Cas9 to introduce human versions of MCPH1, a gene related to brain size, and the human FOXP2 gene, which is thought to give humans unique language ability. “I don't think the monkey will all of a sudden start speaking, but will have some behavioural change,” predicts Su. Although the opportunities are great, there are still obstacles for scientists who choose to locate their animal research in China. Trying to keep a foot in two places can be challenging, says Grégoire Courtine, a spinal-cord-injury researcher based at the Swiss Federal Institute of Technology in Lausanne, who travels almost monthly to China to pursue his monkey research at Motac. He has even flown to Beijing, done a couple of operations on his experimental monkeys, then returned that night. “I'm 40 years old, I have energy in my body. But you need to really will it,” he says. Another downside, says Li, is that policies can change suddenly in China. “There is uncertainty. That makes us hesitate to commit,” says Li, who has retained his post at Emory University. And the immunity that China's primate researchers have had to animal-rights activism could start to erode, warns Deborah Cao, who researches law at Griffith University in Brisbane, Australia, and last year published a book on the use of animals in China5. People are starting to use Chinese social-media sites to voice outrage at the abuse of animals, Cao says. China has competition in its bid to dominate primate research, too. Japan has launched its own brain project focused on the marmoset as a model: the animal reaches sexual maturity in a year and a half, less than half the time it takes a macaque. Some research facilities in China are now building marmoset research colonies — but Japan is considered to be several years ahead. And some researchers want to ensure that such work continues outside Asia. Courtine says that he's “fighting to keep alive” a monkey-research programme he has at Fribourg, Switzerland, because he thinks it's important to have a division of labour. “Research that requires quantity, I'll do in China. I would like to do sophisticated work in Fribourg,” he says. Back at his primate centre in Yunnan, Ji is sure that such work is already taking place. His dream, he says is “to have an animal like a tool” for biomedical discovery. He knows there is a lot of competition in this field, especially in China. But he feels confident: “The field is wide, and there are many, many projects we can do.”


News Article
Site: http://www.greencarcongress.com/

« Zhejiang VIE Science and Technology leads US$10M Series B for wireless charging company Evatran | Main | European Parliament to vote on proposal to veto increased diesel emissions limits » One potential path for delivering higher energy density storage that current Li-ion batteries is to use a multivalent ion such as Ca2+ or Mg2+. (Earlier post.) Now, researchers at Argonne National Laboratory and the Joint Center for Energy Storage Research (JCESR) have demonstrated the first rechargeable calcium-ion battery. Utilizing manganese hexacyanoferrate (MFCN) as the cathode, the battery intercalates Ca reversibly in a dry nonaqueous electrolyte with tin as the anode with a capacity of about 80 mAh/g. This insertion at approximately 3.4 V vs Ca/Ca2+, reported in their paper in the ACS journal Chemical Materials,causes only the Mn oxidation state to change. This implies a theoretical capacity of 100 mAh/g (excluding the mass of Ca). Through modification of the Prussian blue type structure and improvements in the cell design, capacity could theoretically be doubled to about 200 mAh/g if both transition metals undergo redox, the authors said. The authors noted that the preferred anode would be Ca metal, but currently no electrolyte has been shown to reversibly plate and strip Ca metal with high Coulombic efficiency. There is an approximately 50% reduction in capacity after 35 cycles… This capacity fade could be due to a number of factors including the electrolyte being absorbed by the graphite foil, delamination of the tin anode due to volume expansion, lack of passivation on the tin causing it to dissolve into the electrolyte, and an increase in cell resistance due to surface film formation. It is clear that for a more practical battery new electrolytes are needed to improve passivation and surface layer formation, along with enabling a high Coulombic efficiency Ca metal anode; however, these results are the first proof of concept for a functioning reversible nonaqueous calcium battery system.


« Double catalyst for the direct conversion of syngas to lower olefins | Main | Toshiba H2One hydrogen-based autonomous energy supply system now providing power to a Kyushu Resort Hotel; hydrogen storage alloy » In 2015, China’s total output of Li-ion batteries increased by 3.13% year-on-year (YoY)—a significant slowdown in the output growth rate from the prior 5 years, according to the National Bureau of Statistics of the People’s Republic of China. CCM, a leading market intelligence provider for China’s agriculture, chemicals, food & ingredients and life science markets, suggests that the reduction in growth rate is a signal that the market structure of Li-ion batteries in China is changing, with Li-ion batteries for alternative energy vehicles moving to dominate China’s Li-ion battery market instead of consumer Li-ion batteries. On 3 March 2016, data from the National Bureau of Statistics of the People’s Republic of China (NBS) showed that 5.6 billion Li-ion battery cells were produced in China last year, up by 3.13% year-on-year over the 5.43 billion units in 2014. For the previous 5 years, however, the annual growth rate had averaged 20%, with a low of 12.1% in 2010 and a high of 36.16% in 2012. However, CCM says that it was not the growth rate of unit output but the growth rate of battery capacity that could reflect the real situation of Li-ion battery industry—most domestic Li-ion batteries for alternative energy vehicles are large-capacity. In other words, capacity can grow faster than unit output. With the declining of consumer and storage Li-ion batteries, the power Li-ion batteries began to capture the market share thanks to the development of alternative energy vehicles. In the consumer electronics market, at present, the overall annual output is increasing, although some products witnessed a YoY decline. This led to record weak demand for Li-ion batteries in 2015, CCM said. 1.82 billion mobile phones were produced in China in 2015, up by 3.9% YoY; 175 million notebook computers (including tablet PCs) were manufactured, down by 16.8% YoY; and the output of digital cameras was only 19.227 million, down by 20.4% YoY. However, Chinese Li-ion battery industry is increasingly being driven by the alternative energy vehicle industry, which began to develop rapidly in 2014. The domestic output of alternative energy vehicles was increasing rapidly, spurred by the national and local governments. In 2015, the domestic output of alternative energy vehicles was 379,000, an increase of 400% YoY. The changes of consumption pattern helped increase the market share of alternative vehicle Li-ion batteries in domestic Li-ion battery market. In 2014-2015, the market share of such Li-ion batteries has soared from 13% to 52%, exceeding that of consumer Li-ion batteries, the market share of which has dropped from 83% to 46%, according to CCM. The change in the applications of Li-ion batteries has also led to polarization in regional distribution. The top 3 production areas for traditional Li-ion batteries in China are the Pearl River Delta Region (including Guangdong and Fujian provinces); the Yangtze River Delta Region (including Shanghai, Jiangsu and Zhejiang); as well as the Beijing-Tianjin-Hebei Region (including Beijing, Tianjin, Hebei). Due to the rapid development of alternative energy vehicle market and the industrial transfer, the first region is further strengthening its leading position, while the positions of the latter two are declining. Li-ion battery output in these three areas in 2015 were: CCM offers a range of data and content solutions, from price and trade data to industry newsletters and customized market research reports. Clients include Monsanto, DuPont, Shell, Bayer, and Syngenta. For more information about CCM, please visit www.cnchemicals.com.

Discover hidden collaborations