ZAE Bayern Solar Factory of the Future

Nürnberg, Germany

ZAE Bayern Solar Factory of the Future

Nürnberg, Germany

Time filter

Source Type

Lucera L.,ZAE Bayern Solar Factory of the Future | Machui F.,ZAE Bayern Solar Factory of the Future | Schmidt H.D.,ZAE Bayern Solar Factory of the Future | Ahmad T.,ZAE Bayern Solar Factory of the Future | And 8 more authors.
Organic Electronics: physics, materials, applications | Year: 2017

Currently, certified lab scale organic photovoltaic (OPV) cells reach efficiencies of more than 12% and life times of 10 years. For commercialization, it is necessary to understand which performance can be reached in fully printed large scale products. Our investigations show that large area, semi-transparent organic photovoltaic modules based on industrially available materials can achieve power conversion efficiencies of more than 4.8% on rigid substrates and 4.3% on flexible ones. The modules processed with a combination of large area coating and laser patterning with an active area of 68.76 cm2for flexible modules and a total area of 197.4 cm2for glass modules offer exceptionally high geometric fill factors of more than 94% and a transparency of more than 10%. The processing recipe and the layout of the modules are based on indications of optical and electrical simulations which allow to produce devices with only negligible losses in comparison to small single cell devices. Losses due to imperfect coating or patterning are identified by thermal imaging. © 2017 Elsevier B.V.


Noor N.,University of Connecticut | Lucera L.,ZAE Bayern Solar Factory of the Future | Capuano T.,National Instruments | Manthina V.,University of Connecticut | And 3 more authors.
Beilstein Journal of Nanotechnology | Year: 2015

Blue and white light emission is observed when high voltage stress is applied using micrometer-separated tungsten probes across a nanoforest formed of ZnO nanorods. The optical spectrum of the emitted light consistently shows three fine peaks with very high amplitude in the 465-485 nm (blue) range, corresponding to atomic transitions of zinc. Additional peaks with smaller amplitudes in the 330-650 nm range and broad spectrum white light is observed depending on the excitation conditions. The spatial and spectral distribution of the emitted light, with pink-orange regions identifying percolation paths in some cases and high intensity blue and white light with center to edge variations in others, indicate that multiple mechanisms lead to light emission. Under certain conditions, the tungsten probe tips used to make electrical contact with the ZnO structures melt during the excitation, indicating that the local temperature can exceed 3422 °C, which is the melting temperature of tungsten. The distinct and narrow peaks in the optical spectra and the abrupt increase in current at high electric fields suggest that a plasma is formed by application of the electrical bias, giving rise to light emission via atomic transitions in gaseous zinc and oxygen. The broad spectrum, white light emission is possibly due to the free electron transitions in the plasma and blackbody radiation from molten silicon. The white light may also arise from the recombination through multiple defect levels in ZnO or due to the optical excitation from solid ZnO. The electrical measurements performed at different ambient pressures result in light emission with distinguishable differences in the emission properties and I-V curves, which also indicate that the dielectric breakdown of ZnO, sublimation, and plasma formation processes are the underlying mechanisms. © 2015 Noor et al; licensee Beilstein-Institut.


PubMed | ZAE Bayern Solar Factory of the Future, National Instruments and University of Connecticut
Type: | Journal: Beilstein journal of nanotechnology | Year: 2016

Blue and white light emission is observed when high voltage stress is applied using micrometer-separated tungsten probes across a nanoforest formed of ZnO nanorods. The optical spectrum of the emitted light consistently shows three fine peaks with very high amplitude in the 465-485 nm (blue) range, corresponding to atomic transitions of zinc. Additional peaks with smaller amplitudes in the 330-650 nm range and broad spectrum white light is observed depending on the excitation conditions. The spatial and spectral distribution of the emitted light, with pink-orange regions identifying percolation paths in some cases and high intensity blue and white light with center to edge variations in others, indicate that multiple mechanisms lead to light emission. Under certain conditions, the tungsten probe tips used to make electrical contact with the ZnO structures melt during the excitation, indicating that the local temperature can exceed 3422 C, which is the melting temperature of tungsten. The distinct and narrow peaks in the optical spectra and the abrupt increase in current at high electric fields suggest that a plasma is formed by application of the electrical bias, giving rise to light emission via atomic transitions in gaseous zinc and oxygen. The broad spectrum, white light emission is possibly due to the free electron transitions in the plasma and blackbody radiation from molten silicon. The white light may also arise from the recombination through multiple defect levels in ZnO or due to the optical excitation from solid ZnO. The electrical measurements performed at different ambient pressures result in light emission with distinguishable differences in the emission properties and I-V curves, which also indicate that the dielectric breakdown of ZnO, sublimation, and plasma formation processes are the underlying mechanisms.


Spyropoulos G.D.,ZAE Bayern Solar Factory of the Future | Ramirez Quiroz C.O.,Friedrich - Alexander - University, Erlangen - Nuremberg | Salvador M.,Friedrich - Alexander - University, Erlangen - Nuremberg | Salvador M.,University of Lisbon | And 11 more authors.
Energy and Environmental Science | Year: 2016

We demonstrate an innovative solution-processing fabrication route for organic and perovskite solar modules via depth-selective laser patterning of an adhesive top electrode. This yields unprecedented power conversion efficiencies of up to 5.3% and 9.8%, respectively. We employ a PEDOT:PSS-Ag nanowire composite electrode and depth-resolved post-patterning through beforehand laminated devices using ultra-fast laser scribing. This process affords low-loss interconnects of consecutive solar cells while overcoming typical alignment constraints. Our strategy informs a highly simplified and universal approach for solar module fabrication that could be extended to other thin-film photovoltaic technologies. © 2016 The Royal Society of Chemistry.


Lucera L.,ZAE Bayern Solar Factory of the Future | Machui F.,ZAE Bayern Solar Factory of the Future | Kubis P.,ZAE Bayern Solar Factory of the Future | Schmidt H.D.,ZAE Bayern Solar Factory of the Future | And 7 more authors.
Energy and Environmental Science | Year: 2016

Highly efficient, large area OPV modules achieving full area efficiencies of up to 93% of the reference small area cells are reported. The way to a no-loss up-scaling process is highlighted: photoelectrical conversion efficiencies of 5.3% are achieved on rigid modules and of 4.2% on flexible, roll coated ones, employing a commercially available photoactive material. Exceptionally high geometric fill factors (98.5%), achieved via structuring by ultrashort laser pulses, with interconnection widths below 100 μm are demonstrated. © The Royal Society of Chemistry 2016.

Loading ZAE Bayern Solar Factory of the Future collaborators
Loading ZAE Bayern Solar Factory of the Future collaborators