Time filter

Source Type

Xue L.,Yunnan No 2 Provincial Peoples Hospital | Wang J.,Kunming Medical University | Wang W.,Kunming Medical University | Yang Z.,Kunming Medical University | And 3 more authors.
Cell Biochemistry and Biophysics | Year: 2014

Neural stem cells (NSCs) have widely been used in the treatment of human neurological disorders as cell therapy via intracerebral or intraventricular infusion. However, the migration mechanism required for NSCs homing and recruitment remains to be elucidated. Recently, SDF-1/CXCR4 axis was shown to be responsible for in cell migration and differentiation during the neural development stage and involved in the pathophysiological process of neurological disorders. In this study, we investigated the effect of SDF-1 in migration of NSCs in vitro and in vivo. The expression of CXCR4 receptor was examined by immunocytochemistry and RT-PCR. The migratory ability of NSCs induced by SDF-1 was assessed by transwell chemotaxis assay. The traumatic brain injury rat model was well established, and the recruitment of NSCs and expression of SDF-1 were investigated in vivo. Our findings demonstrated that SDF-1, in vitro, significantly induced the migratory of NSCs in a dose-dependent manner. An overexpression of neural stem cell marker Nestin in the hippocampus was observed after TBI, and the expressions of SDF-1 surrounding the lesion areas were significantly increased. Our results suggested that the migration of NSCs was activated by chemotactic effect of SDF-1. It was also proved the relevance of SDF-1 in the migration of endogenous NSCs after brain injury. Taken together, these results demonstrated that SDF-1/CXCR4 axis may play crucial role in the migration of Nestin-positive cell after brain injury. © 2014, Springer Science+Business Media New York.


Ding P.,Kunming Medical University | Wang W.,Kunming Medical University | Wang J.,Kunming Medical University | Yang Z.,Kunming Medical University | Xue L.,Yunnan No 2 Provincial Peoples Hospital
Cell Biochemistry and Biophysics | Year: 2014

The aim of this study is to investigate the expression of tumor-associated macrophages (TAMs) M1, M2 phenotypic in human glioma tissues, and to explore the clinical significance and prognostic value of TAMs in glioma patients. A total of 50 glioma samples were obtained from patients diagnosed in our hospital from 2007 to 2010. Clinical follow-up was conducted via return visits and telephone interviews after discharge. Progression free survival (PFS) was calculated based on tumor progression by MRI and CT examination from the primary operation. Overall survival (OS) time was calculated from the initial surgical operation date to end date of follow-up or death. Kaplan-Meier methodology was used to evaluate the survival of patients and log-rank test for comparing differences between groups. The expression levels of CD16 and CD206 were investigated in the 4 μm serial paraffin sections by immunohistochemistry. M1-type macrophages filtrated in all the grades of glioma samples, and the lower expression level was associated with high grade glioma. A negative correlation was found between WHO pathological grades and the expression of M1-type macrophages by Spearman correlation analysis. M2-type macrophages filtrated in all the grades of glioma samples with the higher expression level associated with high grade glioma. A positive correlation was found between WHO pathological grades and the expression of M2-type macrophages by Spearman correlation analysis. The PFS and OS among patients with high levels of M1-type macrophages (CD16+++) were significantly higher than those with less expression. The PFS and OS among patients with high levels of M2-type macrophages (CD206+++) were significantly lower than those with low expression. M1-type macrophages may inhibit the tumor growth and improve the therapeutic outcome of glioma patients. M2 ratios are associated with tumor proliferation and poor prognosis. TAMs phenotypes of glioma samples are the potential biomarkers in assessing the degree of malignancy, tumor invasion, and patient prognosis in clinic. © 2014 Springer Science+Business Media New York.


PubMed | Yunnan No 2 Provincial Peoples Hospital
Type: Journal Article | Journal: Cell biochemistry and biophysics | Year: 2014

Neural stem cells (NSCs) have widely been used in the treatment of human neurological disorders as cell therapy via intracerebral or intraventricular infusion. However, the migration mechanism required for NSCs homing and recruitment remains to be elucidated. Recently, SDF-1/CXCR4 axis was shown to be responsible for in cell migration and differentiation during the neural development stage and involved in the pathophysiological process of neurological disorders. In this study, we investigated the effect of SDF-1 in migration of NSCs in vitro and in vivo. The expression of CXCR4 receptor was examined by immunocytochemistry and RT-PCR. The migratory ability of NSCs induced by SDF-1 was assessed by transwell chemotaxis assay. The traumatic brain injury rat model was well established, and the recruitment of NSCs and expression of SDF-1 were investigated in vivo. Our findings demonstrated that SDF-1, in vitro, significantly induced the migratory of NSCs in a dose-dependent manner. An overexpression of neural stem cell marker Nestin in the hippocampus was observed after TBI, and the expressions of SDF-1 surrounding the lesion areas were significantly increased. Our results suggested that the migration of NSCs was activated by chemotactic effect of SDF-1. It was also proved the relevance of SDF-1 in the migration of endogenous NSCs after brain injury. Taken together, these results demonstrated that SDF-1/CXCR4 axis may play crucial role in the migration of Nestin-positive cell after brain injury.

Loading Yunnan No 2 Provincial Peoples Hospital collaborators
Loading Yunnan No 2 Provincial Peoples Hospital collaborators