Yung Shin Pharmaceutical Industry Co

Taichung, Taiwan

Yung Shin Pharmaceutical Industry Co

Taichung, Taiwan
Time filter
Source Type

Tseng F.-J.,Hualien Armed Forces Hospital | Tseng F.-J.,Graduate Institute of Medical Science | Chen Y.-C.,National Chiao Tung University | Lin Y.-L.,National Chiao Tung University | And 10 more authors.
Cancer Biology and Therapy | Year: 2010

Vascular endothelial growth factor (VEGF) is an angiogenic factor that signals through VEGFR-1 and VEGFR-2, which are expressed preferentially in proliferating endothelial cells. Thus, simultaneous blockage of both VEGF receptors may provide a more efficient therapeutic response in cancer treatment. We created a recombinant fusion protein (RBDV-IgG1 Fc), which is composed of the receptor binding domain of human VEGF-A (residues 8-109) and the Fc region of human IgG1 immunoglobulin. The recombinant protein can bind to both mouse VEGFR-1 and VEGFR-2 to decrease VEGF-induced proliferation and tube formation of endothelial cells in vitro. In this study, the RBDV-IgG1 Fc fusion protein reduced the effects of proliferation, migration and tube formation induced by VEGF in murine endothelial cells in vitro. In vivo tumor therapy with RBDV-IgG1 Fc resulted in tumor inhibition by reducing angiogenesis. Pathological evidence also shows that RBDV-IgG1 Fc can seriously damage vessels, causing the death of tumor cells. These findings suggest that this chimeric protein has potential as an angiogenesis antagonist in tumor therapy. © 2010 Landes Bioscience.

Lin C.-S.,National Chiao Tung University | Lin C.-S.,National Taiwan University | He P.-J.,National Chiao Tung University | Hsu W.-T.,National Chiao Tung University | And 7 more authors.
Biochemical and Biophysical Research Communications | Year: 2010

Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angiogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60 also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants collected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramatically induced THP-1 cells and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of CXCR2, the receptor for IL-8 and GRO, or downstream PLCβ2/Ca2+-mediated signaling, significantly abolished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via CXCR2/PLCβ2/Ca2+ signal transduction in endothelial cells. © 2010 Elsevier Inc.

Hwang C.-H.,National Tsing Hua University | Hwang C.-H.,Yung Shin Pharmaceutical Industry Co. | Lin Y.-L.,National Chiao Tung University | Liu Y.-K.,National Chiao Tung University | And 8 more authors.
Phytotherapy Research | Year: 2012

7,7′′-Dimethoxyagastisflavone (DMGF), a biflavonoid isolated from the needles of Taxus × media cv. Hicksii, was evaluated for its antiproliferative and antineoplastic effects in three human cancer cell lines. Interestingly, DMGF caused cell death via different pathways in different cancer cells. DMGF induced apoptosis, activated caspase-3 activity and changed the mitochondrial membrane potential in HT-29 human colon cancer cells. However, the apoptotic pathway is not the major pathway involved in DMGF-induced cell death in A549 human lung cancer cells and HepG2 human hepatoma cells. Treatment with 3-MA, an inhibitor of autophagy, significantly decreased DMGF-induced cell death in HepG2 and A549 cells, but did not affect DMGF-induced cell death in HT-29 cells. Following DMGF treatment, the HepG2 cells increased expression of LC3B-II, a marker used to monitor autophagy in cells. Thus, DMGF induced apoptotic cell death in HT-29 cells, triggered both apoptotic and autophagic death in A549 cells and induced autophagic cell death in HepG2 cells. Copyright © 2011 John Wiley & Sons, Ltd.

Chou L.-C.,China Medical University at Taichung | Huang L.-J.,China Medical University at Taichung | Hsu M.-H.,China Medical University at Taichung | Fang M.-C.,China Medical University at Taichung | And 6 more authors.
European Journal of Medicinal Chemistry | Year: 2010

As part of our continuing search for potential anticancer drug candidates among YC-1 analogs, 1, 3-disubstituted selenolo[3,2-c]pyrazole derivatives were synthesized and evaluated for their cytotoxicity against NCI-H226 non-small cell lung cancer and A-498 renal cancer cell lines. Significant cytotoxicity was observed in 3-(5-hydroxymethyl-2-furyl) derivatives (2, 33, 36 and 37). Among them, compound 2 was found to have the most potent activity. The mode of action of compound 2 seems to differ from those of the 175 anticancer agents listed in NCI's standard database and resembles that of YC-1. Thus, we recommend that compound 2 should be developed further as new drug candidate for treatment of non-small cell lung cancer and renal cancer. © 2009 Elsevier Masson SAS. All rights reserved.

Peng C.-Y.,National Taiwan University | Pan S.-L.,National Taiwan University | Pan S.-L.,Taipei Medical University | Pai H.-C.,National Taiwan University | And 6 more authors.
Shock | Year: 2010

Angiogenesis is a process that involves endothelial cell proliferation, migration, invasion, and tube formation, and the inhibition of these processes has implications for angiogenesis-mediated disorders. The purpose of this study was to examine the antiangiogenic efficacy of YD-3 [1-benzyl- 3(ethoxycarbonylphenyl)-indazole], a selective thrombin inhibitor, on thrombin-induced endothelial cell proliferation and neoangiogenesis in a murine Matrigel model. First, the effect of YD-3 on angiogenesis was evaluated in vivo using the mouse Matrigel implant model. Plugs treated with 1 and 10 μM of YD-3 inhibited neovascularization induced by thrombin, protease-activated receptor (PAR) 1, and PAR-4, but not by vascular endothelial growth factor, in a concentration-dependent manner over 7 days. These results indicate that YD-3 has specific antiangiogenic activity on thrombin. YD-3 also inhibited (in a concentration-dependent manner) the ability of thrombin, PAR-1, and PAR-4, but not PAR-2, to induce the proliferation of human umbilical vascular endothelial cells, using a [3H]thymidine incorporation assay. YD-3 predominantly inhibited thrombin-induced vascular endothelial growth factor receptor 2 (Flk-1) expression, but not extracellular signal-regulated kinase 1/2 phosphorylation, using Western blot analysis. YD-3 may have benefit in elucidating pathophysiology induced by thrombin-induced angiogenesis. Copyright © 2010 by the Shock Society.

Chang L.-C.,China Medical University at Taichung | Lin H.-Y.,China Medical University at Taichung | Tsai M.-T.,Yungshin Pharmaceutical Industry Co. | Chou R.-H.,China Medical University at Taichung | And 9 more authors.
British Journal of Pharmacology | Year: 2014

Background and Purpose YC-1 exhibits potent anticancer activity via numerous actions in many cancer cell lines. Hence, we investigated the in vivo antitumour efficacy of YC-1 in an MDA-MB-468 xenograft model and elucidated the mechanism of down-regulation of enhancer of zeste homology 2 (EZH2) by YC-1 in breast cancer cells. Experimental Approach In YC-1-treated breast cancer cells and tumour specimens from YC-1-treated MDA-MB-468 xenografts, EZH2 expression was analysed by Western blotting. Pharmacological inhibitors and short hairpin RNA-mediated knockdown were applied to identify possible signalling pathways involved in EZH2 down-regulation by YC-1. Key Results YC-1 reduced the viability of breast cancer cells and tumour growth in MDA-MB-468 xenografts. In breast cancer cells, YC-1 down-regulated EZH2 expression in a concentration- and time-dependent manner. Depletion of EZH2 reduced the proliferation and susceptibility of breast cancer cells to YC-1-induced apoptosis. EZH2 expression was suppressed in tumour specimens from YC-1-treated MDA-MB-468 xenograft mice. YC-1 enhanced both the degradation rate and ubiquitination of EZH2. The down-regulation of EZH2 by YC-1 was associated with activation of PKA and Src-Raf-ERK-mediated signalling pathways. Furthermore, depletion of Casitas B-lineage lymphoma (c-Cbl), an E3 ubiquitin ligase, abolished YC-1-induced apoptosis and suppression of EZH2. YC-1 rapidly activated c-Cbl to induce signalling associated with ERK and EZH2. Conclusion and Implications We discovered that YC-1 induces apoptosis and inhibits tumour growth of breast cancer cells via down-regulation of EZH2 by activating c-Cbl and ERK. These data suggest that YC-1 is a potential anticancer drug candidate for triple-negative breast cancer. © 2014 The British Pharmacological Society.

Lee J.-C.,China Medical University at Taichung | Chou L.-C.,China Medical University at Taichung | Chou L.-C.,Hungkuang University | Lien J.-C.,China Medical University at Taichung | And 8 more authors.
Oncology Reports | Year: 2013

HER2 has become a solicitous therapeutic target in metastatic and clinical drug-resistant cancer. Here, we evaluated whether or not 1-benzyl-3-(5- hydroxymethyl-2-furyl)indazole (YC-1) and its furopyrazole and thienopyrazole analogues repress the expression of the HER2 protein. Among the test compounds, (1-benzyl-3-(p-hydroxymethylphenyl)-5-methylfuro[3,2-c]pyrazol) (CLC604), an isosteric analogue of YC-1, significantly suppressed the expression of HER2, and preferentially inhibited cell proliferation and induced apoptosis in HER2-overexpressing cancer cells. Our results revealed that CLC604 reduced HER2 expression through a post-transcriptional mechanism and involvement of proteasomal activity. CLC604 disrupted the association of 90-kDa heat shock protein (Hsp90) with HER2 resulting from the inhibition of Hsp90 ATPase activity. Moreover, we found that CLC604 significantly enhanced the antitumor efficacy of clinical drugs against HER2-overexpressing tumors and efficiently reduced HER2-induced drug resistance in vitro and in vivo. These findings suggest that CLC604 should be developed further as a novel antitumor drug candidate for the treatment of drug-resistant cancer.

Loading Yung Shin Pharmaceutical Industry Co collaborators
Loading Yung Shin Pharmaceutical Industry Co collaborators