Time filter

Source Type

Tseng F.-J.,Hualien Armed Forces Hospital | Tseng F.-J.,Graduate Institute of Medical science | Chen Y.-C.,National Chiao Tung University | Lin Y.-L.,National Chiao Tung University | And 10 more authors.
Cancer Biology and Therapy | Year: 2010

Vascular endothelial growth factor (VEGF) is an angiogenic factor that signals through VEGFR-1 and VEGFR-2, which are expressed preferentially in proliferating endothelial cells. Thus, simultaneous blockage of both VEGF receptors may provide a more efficient therapeutic response in cancer treatment. We created a recombinant fusion protein (RBDV-IgG1 Fc), which is composed of the receptor binding domain of human VEGF-A (residues 8-109) and the Fc region of human IgG1 immunoglobulin. The recombinant protein can bind to both mouse VEGFR-1 and VEGFR-2 to decrease VEGF-induced proliferation and tube formation of endothelial cells in vitro. In this study, the RBDV-IgG1 Fc fusion protein reduced the effects of proliferation, migration and tube formation induced by VEGF in murine endothelial cells in vitro. In vivo tumor therapy with RBDV-IgG1 Fc resulted in tumor inhibition by reducing angiogenesis. Pathological evidence also shows that RBDV-IgG1 Fc can seriously damage vessels, causing the death of tumor cells. These findings suggest that this chimeric protein has potential as an angiogenesis antagonist in tumor therapy. © 2010 Landes Bioscience. Source

Peng C.-Y.,National Taiwan University | Pan S.-L.,National Taiwan University | Pan S.-L.,Taipei Medical University | Pai H.-C.,National Taiwan University | And 6 more authors.
Shock | Year: 2010

Angiogenesis is a process that involves endothelial cell proliferation, migration, invasion, and tube formation, and the inhibition of these processes has implications for angiogenesis-mediated disorders. The purpose of this study was to examine the antiangiogenic efficacy of YD-3 [1-benzyl- 3(ethoxycarbonylphenyl)-indazole], a selective thrombin inhibitor, on thrombin-induced endothelial cell proliferation and neoangiogenesis in a murine Matrigel model. First, the effect of YD-3 on angiogenesis was evaluated in vivo using the mouse Matrigel implant model. Plugs treated with 1 and 10 μM of YD-3 inhibited neovascularization induced by thrombin, protease-activated receptor (PAR) 1, and PAR-4, but not by vascular endothelial growth factor, in a concentration-dependent manner over 7 days. These results indicate that YD-3 has specific antiangiogenic activity on thrombin. YD-3 also inhibited (in a concentration-dependent manner) the ability of thrombin, PAR-1, and PAR-4, but not PAR-2, to induce the proliferation of human umbilical vascular endothelial cells, using a [3H]thymidine incorporation assay. YD-3 predominantly inhibited thrombin-induced vascular endothelial growth factor receptor 2 (Flk-1) expression, but not extracellular signal-regulated kinase 1/2 phosphorylation, using Western blot analysis. YD-3 may have benefit in elucidating pathophysiology induced by thrombin-induced angiogenesis. Copyright © 2010 by the Shock Society. Source

Chou L.-C.,China Medical University at Taichung | Huang L.-J.,China Medical University at Taichung | Hsu M.-H.,China Medical University at Taichung | Fang M.-C.,China Medical University at Taichung | And 6 more authors.
European Journal of Medicinal Chemistry | Year: 2010

As part of our continuing search for potential anticancer drug candidates among YC-1 analogs, 1, 3-disubstituted selenolo[3,2-c]pyrazole derivatives were synthesized and evaluated for their cytotoxicity against NCI-H226 non-small cell lung cancer and A-498 renal cancer cell lines. Significant cytotoxicity was observed in 3-(5-hydroxymethyl-2-furyl) derivatives (2, 33, 36 and 37). Among them, compound 2 was found to have the most potent activity. The mode of action of compound 2 seems to differ from those of the 175 anticancer agents listed in NCI's standard database and resembles that of YC-1. Thus, we recommend that compound 2 should be developed further as new drug candidate for treatment of non-small cell lung cancer and renal cancer. © 2009 Elsevier Masson SAS. All rights reserved. Source

Lee J.-C.,China Medical University at Taichung | Chou L.-C.,China Medical University at Taichung | Chou L.-C.,Hungkuang University | Lien J.-C.,China Medical University at Taichung | And 8 more authors.
Oncology Reports | Year: 2013

HER2 has become a solicitous therapeutic target in metastatic and clinical drug-resistant cancer. Here, we evaluated whether or not 1-benzyl-3-(5- hydroxymethyl-2-furyl)indazole (YC-1) and its furopyrazole and thienopyrazole analogues repress the expression of the HER2 protein. Among the test compounds, (1-benzyl-3-(p-hydroxymethylphenyl)-5-methylfuro[3,2-c]pyrazol) (CLC604), an isosteric analogue of YC-1, significantly suppressed the expression of HER2, and preferentially inhibited cell proliferation and induced apoptosis in HER2-overexpressing cancer cells. Our results revealed that CLC604 reduced HER2 expression through a post-transcriptional mechanism and involvement of proteasomal activity. CLC604 disrupted the association of 90-kDa heat shock protein (Hsp90) with HER2 resulting from the inhibition of Hsp90 ATPase activity. Moreover, we found that CLC604 significantly enhanced the antitumor efficacy of clinical drugs against HER2-overexpressing tumors and efficiently reduced HER2-induced drug resistance in vitro and in vivo. These findings suggest that CLC604 should be developed further as a novel antitumor drug candidate for the treatment of drug-resistant cancer. Source

Chang L.-C.,China Medical University at Taichung | Lin H.-Y.,China Medical University at Taichung | Tsai M.-T.,Yung Shin Pharmaceutical Industry Co | Chou R.-H.,China Medical University at Taichung | And 9 more authors.
British Journal of Pharmacology | Year: 2014

Background and Purpose YC-1 exhibits potent anticancer activity via numerous actions in many cancer cell lines. Hence, we investigated the in vivo antitumour efficacy of YC-1 in an MDA-MB-468 xenograft model and elucidated the mechanism of down-regulation of enhancer of zeste homology 2 (EZH2) by YC-1 in breast cancer cells. Experimental Approach In YC-1-treated breast cancer cells and tumour specimens from YC-1-treated MDA-MB-468 xenografts, EZH2 expression was analysed by Western blotting. Pharmacological inhibitors and short hairpin RNA-mediated knockdown were applied to identify possible signalling pathways involved in EZH2 down-regulation by YC-1. Key Results YC-1 reduced the viability of breast cancer cells and tumour growth in MDA-MB-468 xenografts. In breast cancer cells, YC-1 down-regulated EZH2 expression in a concentration- and time-dependent manner. Depletion of EZH2 reduced the proliferation and susceptibility of breast cancer cells to YC-1-induced apoptosis. EZH2 expression was suppressed in tumour specimens from YC-1-treated MDA-MB-468 xenograft mice. YC-1 enhanced both the degradation rate and ubiquitination of EZH2. The down-regulation of EZH2 by YC-1 was associated with activation of PKA and Src-Raf-ERK-mediated signalling pathways. Furthermore, depletion of Casitas B-lineage lymphoma (c-Cbl), an E3 ubiquitin ligase, abolished YC-1-induced apoptosis and suppression of EZH2. YC-1 rapidly activated c-Cbl to induce signalling associated with ERK and EZH2. Conclusion and Implications We discovered that YC-1 induces apoptosis and inhibits tumour growth of breast cancer cells via down-regulation of EZH2 by activating c-Cbl and ERK. These data suggest that YC-1 is a potential anticancer drug candidate for triple-negative breast cancer. © 2014 The British Pharmacological Society. Source

Discover hidden collaborations