Yukon Palaeontology Program

Whitehorse, Canada

Yukon Palaeontology Program

Whitehorse, Canada
Time filter
Source Type

Tahmasebi F.,University of Western Ontario | Longstaffe F.J.,University of Western Ontario | Zazula G.,Yukon Palaeontology Program | Bennett B.,Environment Canada
PLoS ONE | Year: 2017

We examine here the carbon and nitrogen isotopic compositions of bulk soils (8 topsoil and 7 subsoils, including two soil profiles) and five different plant parts of 79 C3 plants from two main functional groups: herbs and shrubs/subshrubs, from 18 different locations in grasslands of southern Yukon Territory, Canada (eastern shoreline of Kluane Lake and Whitehorse area). The Kluane Lake region in particular has been identified previously as an analogue for Late Pleistocene eastern Beringia. All topsoils have higher average total nitrogen δ15N and organic carbon δ13C than plants from the same sites with a positive shift occurring with depth in two soil profiles analyzed. All plants analyzed have an average whole plant δ13C of −27.5 ± 1.2 ‰ and foliar δ13C of –28.0 ± 1.3 ‰, and average whole plant δ15N of −0.3 ± 2.2 ‰ and foliar δ15N of –0.6 ± 2.7 ‰. Plants analyzed here showed relatively smaller variability in δ13C than δ15N. Their average δ13C after suitable corrections for the Suess effect should be suitable as baseline for interpreting diets of Late Pleistocene herbivores that lived in eastern Beringia. Water availability, nitrogen availability, spacial differences and intra-plant variability are important controls on δ15N of herbaceous plants in the study area. The wider range of δ15N, the more numerous factors that affect nitrogen isotopic composition and their likely differences in the past, however, limit use of the modern N isotopic baseline for vegetation in paleodietary models for such ecosystems. That said, the positive correlation between foliar δ15N and N content shown for the modern plants could support use of plant δ15N as an index for plant N content and therefore forage quality. The modern N isotopic baseline cannot be applied directly to the past, but it is prerequisite to future efforts to detect shifts in N cycling and forage quality since the Late Pleistocene through comparison with fossil plants from the same region. © 2017 Tahmasebi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Heintzman P.D.,University of California at Santa Cruz | Zazula G.D.,Yukon Palaeontology Program | Cahill J.A.,University of California at Santa Cruz | Reyes A.V.,University of Alberta | And 2 more authors.
Molecular Biology and Evolution | Year: 2015

Recent advances in paleogenomic technologies have enabled an increasingly detailed understanding of the evolutionary relationships of now-extinct mammalian taxa. However, a number of enigmatic Quaternary species have never been characterized with molecular data, often because available fossils are rare or are found in environments that are not optimal for DNA preservation. Here, we analyze paleogenomic data extracted from bones attributed to the late Pleistocene western camel, Camelops cf. hesternus, a species that was distributed across central and western North America until its extinction approximately 13,000 years ago. Despite a modal sequence length of only around 35 base pairs, we reconstructed high-coverage complete mitochondrial genomes and low-coverage partial nuclear genomes for each specimen. We find that Camelops is sister to African and Asian bactrian and dromedary camels, to the exclusion of South American camelids (llamas, guanacos, alpacas, and vicu~nas). These results contradict previous morphologybased phylogenetic models for Camelops, which suggest instead a closer relationship between Camelops and the South American camelids. The molecular data imply a Late Miocene divergence of the Camelops clade from lineages that separately gave rise to the extant camels of Eurasia. Our results demonstrate the increasing capacity of modern paleogenomic methods to resolve evolutionary relationships among distantly related lineages. © 2015 The Author.

Nalawade-Chavan S.,University of Oxford | Zazula G.,Yukon Palaeontology Program | Brock F.,University of Oxford | Southon J.,University of California at Irvine | And 2 more authors.
Quaternary Geochronology | Year: 2014

American mastodon (Mammut americanum) was amongst the widest ranging of Pleistocene megafaunal species, though their fossils are rare in Alaska and northwest Canada. Questions remain about their extinction chronology at high latitudes because of the limited numbers of available radiocarbon dates. New radiocarbon dates for two American mastodon fossils were generated at two separate accelerator mass spectrometry laboratories using two different approaches, dating ultrafiltered 'collagen' vs. single amino acid fractions. The bulk dates for these specimens are significantly younger than the single amino acid (hydroxyproline) dates, which are in turn close to the background threshold for radiocarbon dating. On closer study we established that contamination from consolidants used in museum conservation was not removed thoroughly despite extensive physical and chemical cleaning procedures having been applied, and this led to the anomalous ultrafiltered 'collagen' results. The new hydroxyproline dates give support to older ages for American mastodons in the Arctic. © 2013 Elsevier B.V.

Metcalfe J.Z.,University of Western Ontario | Longstaffe F.J.,University of Western Ontario | Zazula G.D.,Yukon Palaeontology Program
Palaeogeography, Palaeoclimatology, Palaeoecology | Year: 2010

This study investigates differences in the δ13Ccol, δ15N, δ13Csc, δ18Osc, Sr/Ca, and Ba/Ca values of juvenile and adult woolly mammoths (Mammuthus primigenius) from Old Crow, Yukon, Canada. The data indicate that nursing in woolly mammoths lasted at least three years, and was associated with minimal decreases in δ13Ccol (~0.2‰), large decreases in δ13Csc (~1.5‰), and large increases in δ15N (~2‰) and δ18Osc (~2‰) values. Sr/Ca and Ba/Ca ratios suggest that woolly mammoth juveniles began consuming plant foods between 2 and 3 "African Elephant Years" of age, much later than the initiation of weaning in modern elephants. We hypothesize that delayed weaning was an adaptation to increased predation risk and decreased food quality/quantity during the extended hours of darkness that occur in winter at high latitudes. Prolonged nursing and delayed weaning may have made mammoths particularly vulnerable to climatic stressors or human hunting. © 2010 Elsevier B.V.

Zazula G.D.,Yukon Palaeontology Program | Turner D.G.,Simon Fraser University | Ward B.C.,Simon Fraser University | Bond J.,Geological Survey of Canada
Quaternary Science Reviews | Year: 2011

Western camel (C. hesternus) fossils are rare from Eastern Beringia, thus there is little available information on their chronology, paleoecology, and biogeography in this region. In August of 2010, a partial proximal phalanx of a western camel was recovered from a sedimentary exposure along the White River, in the formerly glaciated terrain of southwest Yukon, northwest Canada. The fossil specimen was recovered in situ from sediments that are correlated by stratigraphic, tephra and radiocarbon data to the Marine Isotope Stage (MIS) 5 interglacial period (Sangamonian). Associated paleoenvironmental data indicates that this western camel inhabited a shrub tundra ecosystem that did not include spruce trees or boreal forest during a relatively cold interval between MIS 5e and 5a. This is the oldest reliably dated western camel fossil from Eastern Beringia and supports the model of range expansion for this species to the high latitudes of northwest North America during the last interglacial (sensu lato). © 2011.

Zazula G.D.,Yukon Palaeontology Program | Froese D.G.,University of Alberta | Elias S.A.,Royal Holloway, University of London | Kuzmina S.,University of Alberta | Mathewes R.W.,Simon Fraser University
Quaternary Science Reviews | Year: 2011

Fossil arctic ground squirrel (Spermophilus parryii) middens were recovered from ice-rich loess sediments in association with Sheep Creek-Klondike and Dominion Creek tephras (ca 80ka) exposed in west-central Yukon. These middens provide plant and insect macrofossil evidence for a steppe-tundra ecosystem during the Early Wisconsinan (MIS 4) glacial interval. Midden plant and insect macrofossil data are compared with those previously published for Late Wisconsinan middens dating to ∼25-2914CkaBP (MIS 3/2) from the region. Although multivariate statistical comparisons suggest differences between the relative abundances of plant macrofossils, the co-occurrence of steppe-tundra plants and insects (e.g., Elymus trachycaulus, Kobresia myosuroides, Artemisia frigida, Phlox hoodii, Connatichela artemisiae) provides evidence for successive reestablishment of the zonal steppe-tundra habitats during cold stages of the Late Pleistocene. Arctic ground squirrels were well adapted to the cold, arid climates, steppe-tundra vegetation and well-drained loessal soils that characterize cold stages of Late Pleistocene Beringia. These glacial conditions enabled arctic ground squirrel populations to expand their range to the interior regions of Alaska and Yukon, including the Klondike, where they are absent today. Arctic ground squirrels have endured numerous Quaternary climate oscillations by retracting populations to disjunct "interglacial refugia" during warm interglacial periods (e.g., south-facing steppe slopes, well-drained arctic and alpine tundra areas) and expanding their distribution across the mammoth-steppe biome during cold, arid glacial intervals. © 2010.

Porter T.M.,McMaster University | Golding G.B.,McMaster University | King C.,McMaster University | Froese D.,University of Alberta | And 2 more authors.
Molecular Ecology Resources | Year: 2013

DNA sequencing of ancient permafrost samples can be used to reconstruct past plant, animal and bacterial communities. In this study, we assess the small-scale reproducibility of taxonomic composition obtained from sequencing four molecular markers (mitochondrial 12S ribosomal DNA (rDNA), prokaryote 16S rDNA, mitochondrial cox1 and chloroplast trnL intron) from two soil cores sampled 10 cm apart. In addition, sequenced control reactions were used to produce a contaminant library that was used to filter similar sequences from sample libraries. Contaminant filtering resulted in the removal of 1% of reads or 0.3% of operational taxonomic units. We found similar richness, overlap, abundance and taxonomic diversity from the 12S, 16S and trnL markers from each soil core. Jaccard dissimilarity across the two soil cores was highest for metazoan taxa detected by the 12S and cox1 markers. Taxonomic community distances were similar for each marker across the two soil cores when the chi-squared metric was used; however, the 12S and cox1 markers did not cluster well when the Goodall similarity metric was used. A comparison of plant macrofossil vs. read abundance corroborates previous work that suggests eastern Beringia was dominated by grasses and forbs during cold stages of the Pleistocene, a habitat that is restricted to isolated sites in the present-day Yukon. © 2013 John Wiley & Sons Ltd.

Blinnikov M.S.,St. Cloud State University | Gaglioti B.V.,University of Alaska Fairbanks | Walker D.A.,University of Alaska Fairbanks | Wooller M.J.,University of Alaska Fairbanks | Zazula G.D.,Yukon Palaeontology Program
Quaternary Science Reviews | Year: 2011

We review evidence obtained from analyses of multiple proxies (floristics, mammal remains, paleoinsects, pollen, macrofossils, plant cuticles, phytoliths, stable isotopes, and modeling) that elucidate the composition and character of the graminoid-dominated ecosystems of the Pleistocene Arctic. The past thirty years have seen a renewed interest in this now-extinct biome, sometimes referred to as "tundra-steppe" (steppe-tundra in North American sources). While many questions remain, converging evidence from many new terrestrial records and proxies coupled with better understanding of paleoclimate dynamics point to the predominance of xeric and cold adapted grassland as the key former vegetation type in the Arctic confirming earlier conjectures completed in the 1960s-1980s. A variety of still existing species of grasses and forbs played key roles in the species assemblages of the time, but their mixtures were not analogous to the tundras of today. Local mosaics based on topography, proximity to the ice sheets and coasts, soil heterogeneity, animal disturbance, and fire regimes were undoubtedly present. However, inadequate coverage of terrestrial proxies exist to resolve this spatial heterogeneity. These past ecosystems were maintained by a combination of dry and cold climate and grazing pressure/disturbance by large (e.g., mammoth and horse) and small (e.g., ground squirrels) mammals. Some recent studies from Eastern Beringia (Alaska) suggest that more progress will be possible when analyses of many proxies are combined at local scales. © 2011 Elsevier Ltd.

Reyes A.V.,University of Alberta | Jensen B.J.L.,University of Alberta | Zazula G.D.,Yukon Palaeontology Program | Ager T.A.,U.S. Geological Survey | And 3 more authors.
Quaternary Science Reviews | Year: 2010

A 40 cm thick primary bed of Old Crow tephra (131 ± 11 ka), an important stratigraphic marker in eastern Beringia, directly overlies a vegetated surface at Palisades West, on the Yukon River in central Alaska. Analyses of insect, bryophyte, and vascular plant macrofossils from the buried surface and underlying organic-rich silt suggest the local presence of an aquatic environment and mesic shrub-tundra at the time of tephra deposition. Autochthonous plant and insect macrofossils from peat directly overlying Old Crow tephra suggest similar aquatic habitats and hydric to mesic tundra environments, though pollen counts indicate a substantial herbaceous component to the regional tundra vegetation. Trace amounts of arboreal pollen in sediments associated with the tephra probably reflect reworking from older deposits, rather than the local presence of trees. The revised glass fission-track age for Old Crow tephra places its deposition closer to the time of the last interglaciation than earlier age determinations, but stratigraphy and paleoecology of sites with Old Crow tephra indicate a late Marine Isotope Stage 6 age. Regional permafrost degradation and associated thaw slumping are responsible for the close stratigraphic and paleoecological relations between Old Crow tephra and last interglacial deposits at some sites in eastern Beringia. © 2009 Elsevier Ltd.

Gaglioti B.V.,University of Alaska Fairbanks | Barnes B.M.,University of Alaska Fairbanks | Zazula G.D.,Yukon Palaeontology Program | Beaudoin A.B.,Royal Alberta Museum | Wooller M.J.,University of Alaska Fairbanks
Quaternary Research | Year: 2011

Botanical analyses of fossil and modern arctic ground squirrel (Urocitellus parryii) caches and nests have been used to reconstruct the past vegetation from some parts of Beringia, but such archives are understudied in Alaska. Five modern and four fossil samples from arctic ground squirrel caches and nests provide information on late Pleistocene vegetation in Eastern Beringia. Modern arctic ground squirrel caches from Alaska's arctic tundra were dominated by willow and grass leaves and grass seeds and bearberries, which were widespread in the local vegetation as confirmed by vegetation surveys. Late Pleistocene caches from Interior Alaska were primarily composed of steppe and dry tundra graminoid and herb seeds. Graminoid cuticle analysis of fossil leaves identified Calamagrostis canadensis, Koeleria sp. and Carex albonigra as being common in the fossil samples. Stable carbon isotopes analysis of these graminoid specimens indicated that plants using the C3 photosynthetic pathways were present and functioning with medium to high water-use efficiency. Fossil plant taxa and environments from ground squirrel caches in Alaska are similar to other macrofossil assemblages from the Yukon Territory, which supports the existence of a widespread mammoth steppe ecosystem type in Eastern Beringia that persisted throughout much of the late Pleistocene. © 2011.

Loading Yukon Palaeontology Program collaborators
Loading Yukon Palaeontology Program collaborators