Time filter

Source Type

Yuhuangding, China

Qin W.-D.,Shandong University | Mi S.-H.,Yu Huang Ding Hospital | Li C.,Shandong University | Wang G.-X.,Linyi Peoples Hospital | And 6 more authors.
PLoS ONE | Year: 2015

Low shear stress (LSS) plays a critical role in the site predilection of atherosclerosis through activation of cellular mechanosensors, such as platelet endothelial cell adhesion molecule 1 (PECAM-1). Poly(ADP-ribose) polymerase 1 (PARP-1) is a nuclear enzyme that regulates the expression of various inflammatory cytokines. The nuclear enzyme high mobility group box 1 (HMGB1) can induce inflammation response by binding to toll-like receptor 4 (TLR4). In the present study, we aimed to investigate the role and mechanism of HMGB1 in LSS induced inflammation in human umbilical vein endothelial cells (HUVECs). HUVECs were stimulated by undisturbed shear stress (USS, 1 Pa) and LSS (0.4 Pa) in our experiments. Gene expression was inhibited by small interfering RNA (siRNA). ICAM-1 expression was regulated by LSS in a time dependent manner. LSS can induce HMGB1 translocation from nucleus to cytoplasm and release. Compared with the USS, LSS could increase the protein expression of PECAM-1 and PARP-1 as well as the secretion of TNF-α and IL-1β. LSS induced the translocation of HMGB1 from nucleus to cytoplasm. Inhibition of HGMB1 reduced LSS-induced inflammatory response. Inhibition of PARP-1 suppressed inflammatory response through inhibiting TLR4 expression and HMGB1 translocation. PECAM-1 inhibition reduced LSS-induced ICAM-1 expression, TNF-α and IL-1β secretion, and monocytes adhesion. LSS can induce inflammatory response via PECAM-1/PARP-1/HMGB1 pathway. PARP-1 plays a fundamental role in HMGB1 translocation and TLR4 expression. Inhibition of PARP-1 may shed light on the treatment of HMGB1 involved inflammation during atherosclerosis. © 2015 Qin et al. Source

Peng X.,Yu Huang Ding Hospital
Acta biochimica et biophysica Sinica | Year: 2012

Atherosclerosis is a chronic inflammatory disease. Toll-like receptor 4 (TLR4) is an important signaling receptor and plays a critical role in the inflammatory response. Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme that can regulate the expression of various inflammatory genes. In this study, we investigated the role and the underlying mechanisms of PARP1 on lipopolysaccharide (LPS)-induced inflammation in human aortic endothelial cells. Compared with the control, LPS stimulation increased the protein expression of TLR4 and PARP1. TLR4 inhibition reduced LPS-induced upregulation of inducible nitric oxide synthase (iNOS) and ICAM-1 as well as PARP1. Nuclear factor κB (NF-κB) inhibition decreased ICAM-1 and iNOS expression. Inhibition of PARP1 decreased protein expression of inflammatory cytokines induced by LPS stimulation, probably through preventing NF-κB nuclear translocation. Our study demonstrated that LPS increased ICAM-1 and iNOS expression via TLR4/PARP1/NF-κB pathway. PARP1 might be an indispensable factor in TLR4-mediated inflammation after LPS stimulation. PARP1 inhibition might shed light on the treatment of LPS-induced inflammatory cytokines expression during atherosclerosis. Source

Meng W.,Yantai University | Ju T.,Yu Huang Ding Hospital | Yu H.,Yantai University
Proceedings - 2010 3rd International Congress on Image and Signal Processing, CISP 2010 | Year: 2010

A SAR target detection model based on CFAR and KPCA is presented in this paper. This Detection is divided into a pre-screening and discrimination process. Within the large-scale and low-resolution SAR imagery, pre-screening adopts classic CFAR techniques, while the discrimination process adopts kernel principal component analysis to separate the target from clutter. Experimental results show that the detection performance of our algorithm appears to be superior to the classic CFAR methodology. The combination of both pre-screening and prior knowledge of targets can effectively enhance detection rate and inhibit false alarm at the same time. ©2010 IEEE. Source

Guo M.,Yantai Vocational College | Yang A.,Yantai Vocational College | Zhou C.,Bruker Daltonics Inc. | Liu X.,Yu Huang Ding Hospital
Journal of Plant Interactions | Year: 2012

Salt stress is a major abiotic stress limiting the productivity and the geographical distribution of many plant species. Arabidopsis thaliana is an excellent model with rich genetic resources for modern plant biology research. To comprehensively and representatively understand salt-response mechanisms in A. thaliana, we applied the first attempt to use the most data (252 of 10,469 reviewed A. thaliana protein) from public protein database for displaying the enriched protein domains, Kyoto Encyclopedia of Genes and Genomes pathways, molecular functions, and cell localizations involved in salt-response. The data were analyzed by Database for Annotation Visualization and Integrated Discovery. Our results indicated salt-response proteins cross-talked not only with drought and temperature stress as previously reported but also with further stresses such as bacterium, light, metal ion, radiation, and wounding stress. Multiple cellular localizations under salt stress indicated proteins were versatile. In addition, 27 proteins have the characteristics with response to multiple stresses and localization in multiple places. We called it the 'space-stress' double cross-talk effects, which indicated that A. thaliana proteins dealt with salt stress and other stresses in a reciprocal economical way. An enriched bioinformatics analysis of the large data could provide clues and basis for the development of salt-response potential biomarkers for plant growth and crop productivity. © 2012 Copyright Taylor and Francis Group, LLC. Source

Li J.,Shandong Research Center for Stem Cell Engineering | Li J.,Yantai University | Liu F.,Shandong Research Center for Stem Cell Engineering | Wang H.,Shandong Research Center for Stem Cell Engineering | And 9 more authors.
Molecular and Cellular Proteomics | Year: 2010

The mammalian spermatozoon has many cellular compartments, such as head and tail, permitting it to interact with the female reproductive tract and fertilize the egg. It acquires this fertilizing potential during transit through the epididymis, which secretes proteins that coat different sperm domains. Optimal levels of these proteins provide the spermatozoon with its ability to move to, bind to, fuse with, and penetrate the egg; otherwise male infertility results. As few human epididymal proteins have been characterized, this work was performed to generate a database of human epididymal sperm-located proteins involved in maturation. Two-dimensional gel electrophoresis of epididymal tissue and luminal fluid proteins, followed by identification using MALDI-TOF/MS or MALDI-TOF/TOF, revealed over a thousand spots in gels comprising 745 abundant nonstructural proteins, 408 in luminal fluids, of which 207 were present on spermatozoa. Antibodies raised to 619 recombinant or synthetic peptides, used in Western blots, histological sections, and washed sperm preparations to confirm antibody quality and protein expression, indicated their regional location in the epididymal epithelium and highly specific locations on washed functional spermatozoa. Sperm function tests suggested the role of some proteins in motility and protection against oxidative attack. A large database of these proteins, characterized by size, pI, chromosomal location, and function, was given a unified terminology reflecting their sperm domain location. These novel, secreted human epididymal proteins are potential targets for a posttesticular contraceptive acting to provide rapid, reversible, functional sterility in men and they are also biomarkers that could be used in noninvasive assessments of male fertility. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc. Source

Discover hidden collaborations