Entity

Time filter

Source Type


Kato T.,Osaka University | Kato T.,International Cooperative Research Project | Yoshida H.,Osaka Medical College | Miyata T.,Osaka University | And 4 more authors.
Structure | Year: 2010

In the stationary growth phase of bacteria, protein biosynthesis on ribosomes is suppressed, and the ribosomes are preserved in the cell by the formation of the 100S ribosome. The 100S ribosome is a dimer of the 70S ribosome and is formed by the binding of the ribosome modulation factor and the hibernation promoting factor. However, the binding mode between the two 70S ribosomes and the mechanism of complex formation are still poorly understood. Here, we report the structure of the 100S ribosome by electron cryomicroscopy and single-particle image analysis. The 100S ribosome purified from the cell in the stationary growth phase is composed of two transfer RNA-free 70S ribosomes, has two-fold symmetry, and is formed through interactions between their 30S subunits, where interactions between small subunit proteins, S2, S3 and S5, appear to be critical for the dimerization. © 2010 Elsevier Ltd. Source


Yoshida H.,Osaka Medical College | Wada A.,Yoshida Biological Laboratory
Wiley Interdisciplinary Reviews: RNA | Year: 2014

One of the most important cellular events in all organisms is protein synthesis (translation), which is catalyzed by ribosomes. The regulation of translational activity is dependent on the environmental situation of the cell. A decrease in overall translation under stress conditions is mainly accompanied by the formation of functionally inactive 100S ribosomes in bacteria. The 100S ribosome is a dimer of two 70S ribosomes that is formed through interactions between their 30S subunits. Two mechanisms of 100S ribosome formation are known: one involving ribosome modulation factor (RMF) and short hibernation promoting factor (HPF) in a part of Gammaproteobacteria including Escherichia coli, and the other involving only long HPF in the majority of bacteria. The expression of RMF is regulated by ppGpp and cyclic AMP-cAMP receptor protein (cAMP-CRP) induced by amino acid starvation and glucose depletion, respectively. When stress conditions are removed, the 100S ribosome immediately dissociates into the active 70S ribosomes by releasing RMF. The stage in the ribosome cycle at which the ribosome loses translational activity is referred to as 'Hibernation'. The lifetime of cells that cannot form 100S ribosomes by deletion of the rmf gene is shorter than that of parental cells under stress conditions in E. coli. This fact indicates that the interconversion system between active 70S ribosomes and inactive 100S ribosomes is an important survival strategy for bacteria. © 2014 John Wiley & Sons, Ltd. Source


Ueta M.,Yoshida Biological Laboratory | Wada C.,Yoshida Biological Laboratory | Daifuku T.,Kyoto University | Sako Y.,Kyoto University | And 9 more authors.
Genes to Cells | Year: 2013

In bacteria, 70S ribosomes (consisting of 30S and 50S subunits) dimerize to form 100S ribosomes, which were first discovered in Escherichia coli. Ribosome modulation factor (RMF) and hibernation promoting factor (HPF) mediate this dimerization in stationary phase. The 100S ribosome is translationally inactive, but it dissociates into two translationally active 70S ribosomes after transfer from starvation to fresh medium. Therefore, the 100S ribosome is called the 'hibernating ribosome'. The gene encoding RMF is found widely throughout the Gammaproteobacteria class, but is not present in any other bacteria. In this study, 100S ribosome formation in six species of Gammaproteobacteria and eight species belonging to other bacterial classes was compared. There were several marked differences between the two groups: (i) Formation of 100S ribosomes was mediated by RMF and short HPF in Gammaproteobacteria species, similar to E. coli, whereas it was mediated only by long HPF in the other bacterial species; (ii) RMF/short HPF-mediated 100S ribosome formation occurred specifically in stationary phase, whereas long HPF-mediated 100S ribosome formation occurred in all growth phases; and (iii) 100S ribosomes formed by long HPF were much more stable than those formed by RMF and short HPF. © 2013 by the Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd. Source


Ueta M.,Yoshida Biological Laboratory | Ueta M.,Osaka Medical College | Wada C.,Yoshida Biological Laboratory | Wada C.,Kyoto University | Wada A.,Yoshida Biological Laboratory
Genes to Cells | Year: 2010

In the stationary growth phase of Escherichia coli, the 70S ribosomes are dimerized by the ribosome modulation factor (RMF) and hibernation promoting factor (HPF) proteins to form 100S ribosomes, which lose translational activity. In this study we found 100S ribosomes in the gram-positive bacterium Staphylococcus aureus, which has an HPF homolog (named SaHPF) but no RMF homolog. Unlike in E. coli, 100S ribosomes exist in all growth phases of S. aureus, with the highest levels at the transition from the exponential phase to the stationary phase. To find the key factors involved in 100S formation, we analyzed proteins associated with crude ribosomes using radical-free and highly reducing 2-D PAGE and MALDI TOF/MS. Only the SaHPF levels changed in parallel with the changes in 100S levels. SaHPF bound preferentially to 70S components in 100S ribosomes, with a molar ratio of 1: 1 relative to the 70S, but some SaHPF was also detected in free 70S ribosomes. High-salt washing of the crude ribosomes released SaHPF and dissociated the 100S ribosomes to their 70S components. When these 70S components were incubated with purified SaHPF in vitro, they re-associated to form 100S. These results suggest that SaHPF is a key protein involved in 100S ribosome formation in S. aureus. © 2009 The Authors. Journal compilation © 2009 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd. Source


Yoshida H.,Osaka Medical College | Maki Y.,Osaka Medical College | Furuike S.,Osaka Medical College | Sakai A.,Osaka Medical College | And 2 more authors.
Journal of Bacteriology | Year: 2012

Here, we provide evidence that YqjD, a hypothetical protein of Escherichia coli, is an inner membrane and ribosome binding protein. This protein is expressed during the stationary growth phase, and expression is regulated by stress response sigma factor RpoS. YqjD possesses a transmembrane motif in the C-terminal region and associates with 70S and 100S ribosomes at the N-terminal region. Interestingly, E. coli possesses two paralogous proteins of YqjD, ElaB and YgaM, which are expressed and bind to ribosomes in a similar manner to YqjD. Overexpression of YqjD leads to inhibition of cell growth. It has been suggested that YqjD loses ribosomal activity and localizes ribosomes to the membrane during the stationary phase. © 2012, American Society for Microbiology. Source

Discover hidden collaborations