Time filter

Source Type

Port Glasgow, United Kingdom

Hoischen A.,Radboud University Nijmegen | Van Bon B.W.M.,Radboud University Nijmegen | Rodriguez-Santiago B.,Radboud University Nijmegen | Rodriguez-Santiago B.,University Pompeu Fabra | And 21 more authors.
Nature Genetics | Year: 2011

Bohring-Opitz syndrome is characterized by severe intellectual disability, distinctive facial features and multiple congenital malformations. We sequenced the exomes of three individuals with Bohring-Opitz syndrome and in each identified heterozygous de novo nonsense mutations in ASXL1, which is required for maintenance of both activation and silencing of Hox genes. In total, 7 out of 13 subjects with a Bohring-Opitz phenotype had de novo ASXL1 mutations, suggesting that the syndrome is genetically heterogeneous. © 2011 Nature America, Inc. All rights reserved.

Hastings R.,University of Bristol | Cobben J.-M.,Emma Kinderziekenhuis AMC | Gillessen-Kaesbach G.,University Lu beck | Goodship J.,Northumbria University | And 17 more authors.
European Journal of Human Genetics | Year: 2011

Bohring-Opitz syndrome (BOS) is a rare congenital disorder of unknown etiology diagnosed on the basis of distinctive clinical features. We suggest diagnostic criteria for this condition, describe ten previously unreported patients, and update the natural history of four previously reported patients. This is the largest series reported to date, providing a unique opportunity to document the key clinical features and course through childhood. Investigations undertaken to try and elucidate the underlying pathogenesis of BOS using array comparative genomic hybridization and tandem mass spectrometry of cholesterol precursors did not show any pathogenic changes responsible. © 2011 Macmillan Publishers Limited.

Banka S.,University of Manchester | Howard E.,University of Manchester | Bunstone S.,University of Manchester | Chandler K.E.,University of Manchester | And 7 more authors.
Clinical Genetics | Year: 2013

Kabuki syndrome (KS) is a rare multi-system disorder that can result in a variety of congenital malformations, typical dysmorphism and variable learning disability. It is caused by MLL2 point mutations in the majority of the cases and, rarely by deletions involving KDM6A. Nearly one third of cases remain unsolved. Here, we expand the known genetic basis of KS by presenting five typical patients with the condition, all of whom have novel MLL2 mutation types- two patients with mosaic small deletions, one with a mosaic whole-gene deletion, one with a multi-exon deletion and one with an intragenic multi-exon duplication. We recommend MLL2 dosage studies for all patients with typical KS, where traditional Sanger sequencing fails to identify mutations. The prevalence of such MLL2 mutations in KS may be comparable with deletions involving KDM6A. These findings may be helpful in understanding the mutational mechanism of MLL2 and the disease mechanism of KS. © 2012 John Wiley & Sons A/S.

Banka S.,University of Manchester | Veeramachaneni R.,University of Manchester | Reardon W.,National Center for Medical Genetics | Howard E.,University of Manchester | And 49 more authors.
European Journal of Human Genetics | Year: 2012

MLL2 mutations are detected in 55 to 80% of patients with Kabuki syndrome (KS). In 20 to 45% patients with KS, the genetic basis remains unknown, suggesting possible genetic heterogeneity. Here, we present the largest yet reported cohort of 116 patients with KS. We identified MLL2 variants in 74 patients, of which 47 are novel and a majority are truncating. We show that pathogenic missense mutations were commonly located in exon 48. We undertook a systematic facial KS morphology study of patients with KS at our regional dysmorphology meeting. Our data suggest that nearly all patients with typical KS facial features have pathogenic MLL2 mutations, although KS can be phenotypically variable. Furthermore, we show that MLL2 mutation-positive KS patients are more likely to have feeding problems, kidney anomalies, early breast bud development, joint dislocations and palatal malformations in comparison with MLL2 mutation-negative patients. Our work expands the mutation spectrum of MLL2 that may help in better understanding of this molecule, which is important in gene expression, epigenetic control of active chromatin states, embryonic development and cancer. Our analyses of the phenotype indicates that MLL2 mutation-positive and -negative patients differ systematically, and genetic heterogeneity of KS is not as extensive as previously suggested. Moreover, phenotypic variability of KS suggests that MLL2 testing should be considered even in atypical patients. © 2012 Macmillan Publishers Limited All rights reserved.

Discover hidden collaborations