Yokohama National University

www.ynu.ac.jp/
Yokohama, Japan

Yokohama National University , or Yokokoku is a leading national university located in Yokohama, Kanagawa Prefecture, Japan. Yokohama National University comprises 5 graduate schools and 4 undergraduate faculties. Yokohama National University is one of leading national universities in Japan. It is consistently one of the highest ranking national universities in Japan that is not one of Japan's National Seven Universities. It is also a core member of the Port-City University League. Wikipedia.


Time filter

Source Type

Patent
Kanagawa Academy Of Science And Technology and Yokohama National University | Date: 2015-03-06

Provided are a transparent fluorescent sialon ceramic having fluorescence and optical transparency; and a method of producing the same. Such a transparent fluorescent sialon ceramic includes a sialon phosphor which contains a matrix formed of a silicon nitride compound represented by the formula M_(x)(Si,Ai)_(y)(N,O)_(z )(here, M represents at least one selected from the group consisting of Li, alkaline earth metals, and rare earth metals, 0x/z<3, and 0


Patent
Toyota Motor Corporation and Yokohama National University | Date: 2016-07-14

Disclosed is a system for detecting an attack, which includes a server and a plurality of vehicles capable of wirelessly communicating with each other. Each of the vehicles has a sensor, a sensor information acquisition unit, a traffic information reception unit, and a transmission unit that transmits the sensor information and the traffic information to the server. The server has a reception unit that receives the sensor information and the traffic information from the vehicles, a verification unit that verifies whether the sensor information and the traffic information are inconsistent with each other, and a notification unit that notifies, when the sensor information and the traffic information are inconsistent with each other, the vehicles of the inconsistency.


Patent
Yokohama National University and De Nora Permelec Ltd. | Date: 2017-02-01

A device for producing an organic hydride 10 of an aspect of the present invention has an electrochemical cell provided with an anode 12 on a surface of an electrolyte membrane 11 and a cathode including a cathode catalyst layer 13 and a cathode diffusion layer 14 on another surface of the electrolyte membrane 11. A gap is provided between the anode 12 and the electrolyte membrane 11. The anode 12 has a network structure with an aperture ratio of 30 to 70%, and has an electrical supply supporting material formed of an electronic conductor and the electrode catalyst held by the electrical supply supporting material.


Patent
Yokohama National University and De Nora Permelec Ltd | Date: 2015-03-24

A device for producing an organic hydride 10 of an aspect of the present invention has an electrochemical cell provided with an anode 12 on a surface of an electrolyte membrane 11 and a cathode including a cathode catalyst layer 13 and a cathode diffusion layer 14 on another surface of the electrolyte membrane 11. A gap is provided between the anode 12 and the electrolyte membrane 11. The anode 12 has a network structure with an aperture ratio of 30 to 70%, and has an electrical supply supporting material formed of an electronic conductor and the electrode catalyst held by the electrical supply supporting material.


Patent
Yokohama National University | Date: 2015-02-27

The present invention provides a novel oxygen reduction catalyst having a good stability and a high oxygen reduction performance. The oxygen reduction catalyst includes: a conductive oxide; and an oxide(s), having oxygen holes and provided at least on the surface of the conductive oxide, of at least one or more transition metals selected from the group consisting of Ti, Zr, Nb and Ta.


Patent
Yokohama National University and De Nora Permelec Ltd. | Date: 2017-08-02

To provide an electrolysis cell for producing an organic chemical hydride capable of advancing a reduction reaction in a cathode of an organic compound having an unsaturated bond with high current efficiency and a small electric power consumption unit. An electrolysis cell 10 for producing an organic chemical hydride includes a solid polymer electrolyte film 11 which has proton conductivity; a cathode 12 which is provided on one surface of the solid polymer electrolyte film 11 and generates a hydride by reducing a substance to be hydrogenated; a cathode chamber 13 which accommodates the cathode 12 and to which the substance to be hydrogenated is supplied; an electrode catalyst-containing anode 14 which is provided on another surface of the solid polymer electrolyte film 11 and generates a proton by oxidizing water; and an anode chamber 15 which accommodates the anode 14 and to which an electrolytic solution is supplied, in which at least one of a surface of the cathode 12 side and a surface of the anode 14 side of the solid polymer electrolyte film 11 is hydrophilized.


Patent
Yokohama National University, Kawasaki Heavy Industries and De Nora Permelec Ltd. | Date: 2016-09-07

An anode for alkaline water electrolysis includes a conductive substrate having at least a surface made of nickel or a nickel-base alloy and a lithium-containing nickel oxide catalytic layer formed on a surface of the substrate. The molar ratio (Li/Ni) of lithium and nickel in the catalytic layer is in the range of 0.005 to 0.15.


Patent
Unizeo Co., Yokohama National University and University of Tokyo | Date: 2016-08-03

Provided is a MSE-type zeolite which has a high catalytic activity and is not easily deactivated. The MSE-type zeolite of the invention has a Si/Al ratio of 5 or more, is a proton-type zeolite, and is obtained by transforming a raw material MSE-type zeolite synthesized without using a structure directing agent into an ammonium-type zeolite through ion exchange, then, exposing the MSE-type zeolite to water vapor, and subjecting the exposed MSE-type zeolite to an acid treatment. The invention provides moreover a catalytic cracking catalyst of paraffin including this MSE-type zeolite, and a manufacturing method of a MSE-type zeolite.


Patent
Yokohama National University | Date: 2016-02-24

A gas detector (10) includes a cell internal space (130) into which a target gas is supplied, the target gas exhibiting an absorption peak in an absorption spectrum; a light source (410) configured to generate light having at least a wavelength belonging to the absorption peak; and a photodetector (420) configured to detect the light that has emitted from the light source (410) and has propagated through the cell internal space (130). The gas detector (10) further includes a conductive thin film (220) in which a plurality of optical apertures(222) are regularly arranged such that a transmission peak in a transmission spectrum is superimposed over the absorption peak in the absorption spectrum along a wavelength axis. The conductive thin film (220) is provided on an optical path extending from the light source (410) to the photodetector (420), and is provided so as to be contactable with the target gas within the cell internal space (130).


Patent
Yokohama National University | Date: 2016-01-27

There is provided a cooler which has a simple structure and stably exhibits a good cooling effect. A cooler includes: a container accommodating a working fluid; and a cooling member provided in the container so as to be brought into contact with the working fluid and to face a heat generation element. The cooling member has a stacked structure including a first porous body provided on the heat generation element side and a second porous body provided on the working fluid side. The first porous body includes: a first working fluid supply part supplying the working fluid, by capillary action, to a contact part which is in contact with the heat generation element; and a first vapor discharge part discharging vapor generated in the contact part to the second porous body side. The second porous body includes: a second working fluid supply part supplying the working fluid to the first porous body; and a second vapor discharge part discharging the vapor discharged from the first porous body, into the working fluid. The second porous body has a higher permeability of the working fluid compared with the first porous body.

Loading Yokohama National University collaborators
Loading Yokohama National University collaborators