New York City, NY, United States

Yeshiva University

www.yu.edu
New York City, NY, United States

Yeshiva University is a private university in New York City, with four campuses in New York City. Founded in 1886, it is a research university.The university's undergraduate schools—Yeshiva College, Stern College for Women, and Syms School of Business— offer a dual curriculum inspired by Modern-Centrist-Orthodox Judaism's hashkafa of Torah Umadda combining academic education with the study of Torah. Yeshiva is perhaps best known for its secular, highly selective graduate schools, the Albert Einstein College of Medicine and the Benjamin N. Cardozo School of Law. The Forward announced on May 27, 2014 that Yeshiva would be shedding the financial burden of Albert Einstein College of Medicine by initiating an arrangement with Montefiore Hospital.Yeshiva University is an independent institution chartered by New York State. It is accredited by the Commission on Higher Education of the Middle States Association of Colleges and Schools and by several professional agencies. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Patent
Yeshiva University | Date: 2017-04-05

Methods are provided for identifying an agent that directly modulates a Bcl-2- associated x-protein (BAX) by promoting or disrupting dimerization of the BAX. Agents that directly modulate BAX by affecting dimerization are also provided.


Patent
Yeshiva University | Date: 2017-03-10

Recombinant herpes simplex virus 2 (HSV-2) vaccine vectors, virions thereof, compositions and vaccines comprising such, and methods of use thereof are each provided.


Patent
University of Washington and Yeshiva University | Date: 2016-09-09

Reversibly switchable photoacoustic tomography (RS-PAT), a photoacoustic technique with enhanced sensitivity and resolution, is disclosed. RS-PAT utilizes a subtractive process for the formation of a photoacoustic image of a region containing a plurality of switchable photoacoustic probes. In various aspects, the photoacoustic detection in RS-PAT imaging occurs minimally twice: a first image obtained when the photoacoustic probe is in active (absorbing or ON) state and a second image obtained when the photoacoustic probe is in an inactive (less-absorbing or OFF) state. Subtraction of the second image from the first image is used to obtain the RS-PAT image.


Patent
Yeshiva University | Date: 2017-06-28

Heritable mutations in the BRCA1 and BRCA2 and other genes in the DNA double-strand break (DSB) repair pathway increase risk of breast, ovarian and other cancers. In response to DNA breaks, the proteins encoded by these genes bind to each other and are transported into the nucleus to form nuclear foci and initiate homologous recombination. Flow cytometry-based functional variant analyses (FVAs) were developed to determine whether variants in BRCA1 or other DSB repair genes disrupted the binding of BRCA1 to its protein partners, the phosphorylation of p53 or the transport of the BRCA1complex to the nucleus in response to DNA damage. Each of these assays distinguished high-risk BRCA1 mutations from low-risk BRCA1 controls. Mutations in other DSB repair pathway genes produced molecular phenocopies with these assays. FVA assays may represent an adjunct to sequencing for categorizing VUS or may represent a stand-alone measure for assessing breast cancer risk.


Methods for treating and for preventing Filovirus infections are disclosed, as well as compositions therefor.


Patent
Yeshiva University | Date: 2017-04-26

Methods and compositions for clonally inhibiting or clonally stimulating T-cells are provided.


Patent
Yeshiva University | Date: 2017-01-11

Recombinant herpes simplex virus 2 (HSV-2) vaccine vectors, virions thereof, compositions and vaccines comprising such, and methods of use thereof are each provided.


Pereda A.E.,Yeshiva University
Nature Reviews Neuroscience | Year: 2014

Brain function relies on the ability of neurons to communicate with each other. Interneuronal communication primarily takes place at synapses, where information from one neuron is rapidly conveyed to a second neuron. There are two main modalities of synaptic transmission: chemical and electrical. Far from functioning independently and serving unrelated functions, mounting evidence indicates that these two modalities of synaptic transmission closely interact, both during development and in the adult brain. Rather than conceiving synaptic transmission as either chemical or electrical, this article emphasizes the notion that synaptic transmission is both chemical and electrical, and that interactions between these two forms of interneuronal communication might be required for normal brain development and function. © 2014 Macmillan Publishers Limited.


Schramm V.L.,Yeshiva University
Annual Review of Biochemistry | Year: 2011

Experimental analysis of enzymatic transition-state structures uses kinetic isotope effects (KIEs) to report on bonding and geometry differences between reactants and the transition state. Computational correlation of experimental values with chemical models permits three-dimensional geometric and electrostatic assignment of transition states formed at enzymatic catalytic sites. The combination of experimental and computational access to transition-state information permits (a) the design of transition-state analogs as powerful enzymatic inhibitors, (b) exploration of protein features linked to transition-state structure, (c) analysis of ensemble atomic motions involved in achieving the transition state, (d) transition-state lifetimes, and (e) separation of ground-state (Michaelis complexes) from transition-state effects. Transition-state analogs with picomolar dissociation constants have been achieved for several enzymatic targets. Transition states of closely related isozymes indicate that the protein's dynamic architecture is linked to transition-state structure. Fast dynamic motions in catalytic sites are linked to transition-state generation. Enzymatic transition states have lifetimes of femtoseconds, the lifetime of bond vibrations. Binding isotope effects (BIEs) reveal relative reactant and transition-state analog binding distortion for comparison with actual transition states. © 2011 by Annual Reviews. All rights reserved.


Frangogiannis N.G.,Yeshiva University
Physiological Reviews | Year: 2012

The term matricellular proteins describes a family of structurally unrelated extracellular macromolecules that, unlike structural matrix proteins, do not play a primary role in tissue architecture, but are induced following injury and modulate cell-cell and cell-matrix interactions. When released to the matrix, matricellular proteins associate with growth factors, cytokines, and other bioactive effectors and bind to cell surface receptors transducing signaling cascades. Matricellular proteins are upregulated in the injured and remodeling heart and play an important role in regulation of inflammatory, reparative, fibrotic and angiogenic pathways. Thrombospondin (TSP)-1, -2, and -4 as well as tenascin-C and -X secreted protein acidic and rich in cysteine (SPARC), osteopontin, periostin, and members of the CCN family (including CCN1 and CCN2/connective tissue growth factor) are involved in a variety of cardiac pathophysiological conditions, including myocardial infarction, cardiac hypertrophy and fibrosis, aging-associated myocardial remodeling, myocarditis, diabetic cardiomyopathy, and valvular disease. This review discusses the properties and characteristics of the matricellular proteins and presents our current knowledge on their role in cardiac adaptation and disease. Understanding the role of matricellular proteins in myocardial pathophysiology and identification of the functional domains responsible for their actions may lead to design of peptides with therapeutic potential for patients with heart disease. © 2012 by the American Physiological Society.

Loading Yeshiva University collaborators
Loading Yeshiva University collaborators