Time filter

Source Type

Irbid, Jordan

Yarmouk University is a public university in Irbid in northern Jordan. It was established by a Royal Decree in 1976. Wikipedia.

Alomary A.,Yarmouk University
Environmental Monitoring and Assessment | Year: 2013

Drinking water samples from Irbid, the second populated city in Jordan were analyzed for trace metals (As, Ba, Cd, Pb, Cr, Cu, Fe, Zn, Mn, Ni, and Se) content. The study was undertaken to determine if the metal concentrations were within the national and international guidelines. A total of 90 drinking water samples were collected from Al-Yarmouk University area. The samples were collected from three different water types: tap water (TW), home-purified water (HPW), and plant-purified water (PPW). All the samples were analyzed for trace metals using an inductively coupled plasma-optical emission spectrometry. All the samples analyzed were within the United States Environmental Protection Agency admissible pH limit (6.5-8.5). The results showed that concentrations of the trace metals vary significantly between the three drinking water types. The results showed that HPW samples have the lowest level of trace metals and the concentrations of some essential trace metals in these samples are less than the recommended amounts. Slight differences in the metal contents were found between HPW samples, little differences between PPW samples; however, significant differences were found between TW samples. Although some TW samples showed high levels of trace metals, however, the mean level of most elements determined in the samples were well within the Jordanian standards as well as the World Health Organization standards for drinking water. © 2012 Springer Science+Business Media B.V. Source

Bany Salameh H.A.,Yarmouk University
Mathematical and Computer Modelling | Year: 2011

Cognitive radio (CR) is a revolutionary technology in wireless communications that enhances spectrum utilization by allowing opportunistic and dynamic spectrum access. One of the key challenges in this domain is how CR users cooperate to dynamically access the available spectrum opportunities in order to maximize the overall perceived throughput. In this paper, we consider the coordinated spectrum access problem in a multi-user single-transceiver CR network (CRN), where each CR user is equipped with only one half-duplex transceiver. We first formulate the dynamic spectrum access as a rate/power control and channel assignment optimization problem. Our objective is to maximize the sum-rate achieved by all contending CR users over all available spectrum opportunities under interference and hardware constraints. We first show that this problem can be formulated as a mixed integer nonlinear programming (MINLP) problem that is NP-hard, in general. By exploiting the fact that actual communication systems have a finite number of available channels, each with a given maximum transmission power, we transfer this MINLP into a binary linear programming problem (BLP). Due to its integrality nature, this BLP is expected to be NP-hard. However, we show that its constraint matrix satisfies the total unimodularity property, and hence our problem can be optimally solved in polynomial time using linear programming (LP). To execute the optimal assignment in a distributed manner, we then present a distributed CSMA/CA-based random access mechanism for CRNs. We compare the performance of our proposed mechanism with reference CSMA/CA channel access mechanisms designed for CRNs. Simulation results show that our proposed mechanism significantly improves the overall network throughput and preserves fairness. © 2010 Elsevier Ltd. Source

Alomoush M.I.,Yarmouk University
Electrical Engineering | Year: 2010

Recently, fractional calculus has received extensive attention and research. Accordingly, there is an increasing interest in fractional-order (FO) dynamic systems and controllers. The widely used classical integer-order proportional-integral controller and proportional-integral-derivative controller are usually adopted in the load frequency control (LFC) and automatic generation control (AGC) to improve the dynamic response and to eliminate or reduce steady-state errors. This paper utilizes the FO controllers to improve stability and response of LFC and AGC system. The paper uses the integral of the time-weighted absolute error performance index for optimal controller design. The paper investigates LFC and AGC for both isolated and interconnected power systems and shows that FO controllers perform better than classical integer-order controllers in theses systems. © Springer-Verlag 2009. Source

Al-Agtash S.Y.,Yarmouk University
Energy | Year: 2010

This paper presents a Supply Curve Bidding (SCB) approach that complies with the notion of the Standard Market Design (SMD) in electricity markets. The approach considers the demand-side option and Locational Marginal Pricing (LMP) clearing. It iteratively alters Supply Function Equilibria (SFE) model solutions, then choosing the best bid based on market-clearing LMP and network conditions. It has been argued that SCB better benefits suppliers compared to fixed quantity-price bids. It provides more flexibility and better opportunity to achieving profitable outcomes over a range of demands. In addition, SCB fits two important criteria: simplifies evaluating electricity derivatives and captures smooth marginal cost characteristics that reflect actual production costs. The simultaneous inclusion of physical unit constraints and transmission security constraints will assure a feasible solution. An IEEE 24-bus system is used to illustrate perturbations of SCB in constrained power networks within the framework of SDM. By searching in the neighborhood of SFE model solutions, suppliers can obtain their best bid offers based on market-clearing LMP and network conditions. In this case, electricity producers can derive their best offering strategy both in the power exchange and the long-term contractual markets within a profitable, yet secure electricity market. © 2010 Elsevier Ltd. Source

Migdadi Y.K.A.-A.,Yarmouk University
International Journal of Services and Operations Management | Year: 2012

The aim of this study is to identify the effective banking service delivery process design strategy during the period 1999 to 2008. Fifteen local banks in Jordan were surveyed by using three questionnaires, one of them directed to branch managers, another to tellers and last one to front office credit employees. This study revealed that the majority of process design actions made were related to information system, however, the significant capabilities were related to reducing account transaction time, reducing account transaction cost, improving tellers' productivity, reducing loan approval time, and reducing loan approval cost. The relative impact of information system actions on account transaction time and loan approval time is significantly more than reducing number of process steps. The banks in Jordan and other developing countries can focus now on more effective aspects of process design rather than investing in less effective actions. No previous study reported in-depth the banking service delivery process, so this paper is the first paper that reports this issue in developing economies. Copyright © 2012 Inderscience Enterprises Ltd. Source

Discover hidden collaborations