Yangling Demonstration Zone Hospital

Yangling, China

Yangling Demonstration Zone Hospital

Yangling, China
Time filter
Source Type

Liu W.,Yangling Demonstration Zone Hospital
Journal of Cellular Biochemistry | Year: 2013

Boule is a conserved gene in meiosis, which encodes RNA binding protein required for spermatocyte meiosis. Deletion of Boule was found to block meiosis in spermatogenesis, which contributes to infertility. Up to date, the expression and function of Boule in the goat testis are not known. The objectives of this study were to investigate the expression pattern of Boule in dairy goat testis and their function in male germline stem cells (mGSCs). The results first revealed that the expression level of Boule in adult testes was significantly higher than younger and immature goats, and azoospermia and male intersex testis. Over-expression of Boule promoted the expression of meiosis-related genes in dairy goat mGSCs. The expression of Stra8 was up-regulated by over-expression of Boule analyzed by Western blotting and Luciferase reporter assay. While, Cdc25a, the downstream regulator of Boule, was found not to affect the expression of Stra8, and our data illustrated that Cdc25a did not regulate meiosis via Stra8. The expression of Stra8 and Boule was up-regulated by RA induction. Taken together, results suggest the Boule plays an important role in dairy goat spermatogenesis and that over-expression of Boule may promote spermatogenesis and meiosis in dairy goat. © 2012 Wiley Periodicals, Inc.

Hua J.,Northwest University, China | Zhu H.,Northwest University, China | Pan S.,Northwest University, China | Liu C.,Northwest University, China | And 5 more authors.
Cellular Reprogramming | Year: 2011

Male germline stem cells (mGSCs) are stem cells present in male testis responsible for spermatogenesis during their whole life. Studies have shown that mGSCs can be derived in vitro and resemble embryonic stem cells (ESCs) properties both in the mouse and humans. However, little is know about these cells in domestic animals. Here we report the first successful establishment of goat GSCs derived from 2-5-month fetal testis, and developmental potential assay of these cells both in vitro and in vivo. These cells express pluripotent markers such as Oct4, Sox2, C-myc, and Tert when cultured as human ESCs conditions. Embryoid bodies (EBs) formed by goat mGSCs were induced with 2×10-6 M retinoic acid (RA). Immunofluorescence analysis showed that some cells inside of the EBs were positive for meiosis marker-SCP3, STRA8, and germ cell marker-VASA, and haploid marker-FE-J1, PRM1, indicating their germ cell lineage differentiation. Some cells become elongated sperm-like cells after induction. Approximately 34.88% (30/86) embryos showed cleavage and four embryos were cultured on murine fibroblast feeder and formed small embryonic stem like colonies. However, most stalled at four-cell stage after intracytoplasmic sperm injection (ICSI) of these cells. Transplantation of DAPI labeled mGSCs into the seminiferous tubules of busulfan-treated mice, and showed that mGSCs can colonize, self-renew, and differentiate into germ cells. Thus, we have established a goat GSC cell line and these cells could be differentiated into sperm-like cells in vivo and sperms in vitro, providing a promising platform for generation of transgenic goat for production of specific humanized proteins. © 2011 Mary Ann Liebert, Inc.

Song W.,Northwest University, China | Zhu H.,Northwest University, China | Li M.,Northwest University, China | Li N.,Northwest University, China | And 6 more authors.
Cell Proliferation | Year: 2013

Objectives: Previous studies have shown that promyelocytic leukaemia zinc finger (PLZF) is a spermatogonia-specific transcription factor in the testis, required to regulate self-renewal and maintenance of the spermatogonia stem cell. Up to now, expression and function of PLZF in the goat testis has not been known. The objectives of this study were to investigate PLZF expression pattern in the dairy goat and its effect on male goat germline stem cell (mGSC) self-renewal and differentiation. Materials and methods: Testis development and expression patterns of PLZF in the dairy goat were analysed by haematoxylin and eosin staining, immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). Furthermore, effects of PLZF overexpression on mGSC self-renewal and differentiation were evaluated by quantitative RT-PCR (QRT-PCR), immunofluorescence and BrdU incorporation assay. Results: Promyelocytic leukaemia zinc finger was essential for dairy goat testis development and expression of several proliferation and pluripotency-associated proteins including OCT4, C-MYC were upregulated by PLZF overexpression. The study demonstrated that PLZF played a key role in maintaining self-renewal of mGSCs and its overexpression enhanced expression of proliferation-associated genes. Conclusions: Promyelocytic leukaemia zinc finger could function in the dairy goat as well as in other species in maintaining self-renewal of germline stem cells and this study provides a model to study the mechanism on self-renewal and differentiation of mGSCs in livestock. © 2013 John Wiley & Sons Ltd.

Bai Y.,Northwest University, China | Yu M.,Northwest University, China | Hu Y.,Northwest University, China | Qiu P.,Northwest University, China | And 4 more authors.
Cell Proliferation | Year: 2013

Objectives: Existence of germline stem cells (GSCs) in juvenile mammalian female ovaries has been drastically debated recently since reports that adult mouse ovaries still have mitotically active germ cells have been proposed. In addition, definitive location of such female germline stem cells (FGSCs) had not been demonstrated. Materials and methods: We segregated porcine FGSCs mechanically from ovary cortex, and tested our hypotheses by utilizing immunofluorescent staining, qRT-PCR and western blotting. Results: We attached emphasis to unambiguous location of FGSCs, which settle simultaneously in the theca. Dissected cells from porcine thecal layers maintained similar characteristics to mouse FGSCs and ESCs over 4-months in vitro culture. Conclusion: These results may provide a new resource for the study of oogenesis and therapy for ovarian sterility. © 2013 John Wiley & Sons Ltd.

WANG F.,Northwest University, China | LIU C.,Northwest University, China | ZHANG S.-S.,Northwest University, China | LIU W.-S.,Yangling Demonstration Zone Hospital | HUA J.-L.,Northwest University, China
Journal of Integrative Agriculture | Year: 2013

Mesenchymal stem cells (MSCs) derived from bone marrow are a well-characterized population of adult stem cells that can be maintained and propagated in culture for a long time with the capacity to form a variety of cell types. This study investigated the characteristics of dairy goat bone marrow MSCs (gMSCs) and their differentiation potential toward germ cells in vitro, and to test their potential in vivo, these cells were transplanted into seminiferous tubes of endogenous germ cells-depleted mouse models. The results showed that characteristic gMSC lines were established and a small population of gMSCs transdifferentiated into male germ cell-like cells which expressed Stra8 after induction with retinoic acid (RA), as analysed by reverse transcription-polymerase chain reaction (RT-PCR) and immunofluorescence. Further, we transplanted the gMSCs into endogenous germ cells-depleted mouse models. A variety of analysis demonstrated that gMSCs might differentiate into male germ cells and helped spermatogenesis in endogenous germ cells depleted mouse models at 30 d after transplantation. The gMSCs could be used as a potential source of cells for reproductive studies and a neoadjuvant therapy for the spermatogenesis anomaly. Moreover, these cells may offer a new strategy for male infertility and an alternative approach for production of transgenic animals. © 2013 Chinese Academy of Agricultural Sciences.

PubMed | Northwest Agriculture and Forestry University, Inner Mongolia University and Yangling Demonstration Zone Hospital
Type: | Journal: Antioxidants & redox signaling | Year: 2016

Many men endure immunosuppressive or anticancer treatments that contain alkylating agents prior to the age of sexual maturity, especially the increasing number of preadolescent males who undergo busulfan treatment for myeloablative conditioning prior to hematopoietic stem cell transplantation. Prior to sperm production, there are no sperm available for cryopreservation. Thus, it is necessary to identify a solution to ameliorate the busulfan-induced damage of spermatogonial stem cells (SSCs).Here, we demonstrated that melatonin relieved the previously described SSC loss and apoptosis in mouse testes. Melatonin increased the expression of MnSOD, which regulated the production of busulfan-induced ROS (Reactive oxygen species). Moreover, melatonin promoted SIRT1 expression. SIRT1 participated in the deacetylation of p53, which promotes p53 ubiquitin degradation. Decreased concentrations of deacetylated p53resulted in spermatogonial cell resistance to apoptosis. Acute T cell leukemia cell assay demonstrated that melatonin does not affect busulfan-induced cancer cell apoptosis and ROS.The current evidence suggests that melatonin may alleviate the side effects of alkylating drugs, such as busulfan.Melatonin promoted MnSOD and SIRT1 expressions, which successfully ameliorated busulfan-induced SSC apoptosis caused by high concentrations of ROS and p53.

PubMed | Northwest Agriculture and Forestry University and Yangling Demonstration Zone Hospital
Type: Journal Article | Journal: Cell proliferation | Year: 2016

Previous studies have shown that germ-like cells can be induced from human umbilical cord mesenchymal stem cell (hUC-MSCs) in vitro. However, induction efficiency was low and a stable system had not been built. CD61, also called integrin-3, plays a significant role in cell differentiation, in that CD61-positive-cell-derived pluripotent stem cells easily differentiate into primordial germ-like cells (PGC). Here, we have explored whether overexpression of CD61 would promote hUC-MSC differentiation into PGC and male germ-like cells.hUC-MSCs were cultured and transduced using pCD61-CAGG-TRIP-pur (oCD61) and pTRIP-CAGG plasmid (Control), and hUC-MSCs overexpressed CD61 were induced by bone morphogenetic protein 4 (BMP4, 12.5 ng/ml), to differentiate into PGC and male germ cells. Quantitative real-time PCR (RT-qPCR), western blotting and immunofluorescence staining were used to examine PGC- and germ cell-specific markers.High expression levels of PGC-specific markers were detected in oCD61 hUC-MSCs compared to controls. After BMP4 induction, expression levels of male germ cell markers such as Acrosin (ACR), Prm1 and meiotic markers including Stra8, Scp3 in oCD61 were significantly higher than those of the Control group.Under induction of BMP4, CD61-overexpressing hUC-MSCs, which had turned into PGC-like cells, could be further differentiated into male germ-like cells. Thus, a simple and efficient approach to study male germ cell development by using hUC-MSCs has been established.

Loading Yangling Demonstration Zone Hospital collaborators
Loading Yangling Demonstration Zone Hospital collaborators