Yame Public General Hospital

Yame, Japan

Yame Public General Hospital

Yame, Japan
SEARCH FILTERS
Time filter
Source Type

Kikuchi K.,Yame Public General Hospital | Uchikado H.,Kurume University | Miura N.,Kagoshima University | Morimoto Y.,Kagoshima University | And 11 more authors.
Experimental and Therapeutic Medicine | Year: 2011

Historically, clinical outcomes following spinal cord injury (SCI) have been dismal. Severe SCI leads to devastating neurological deficits, and there is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. To address all the issues associated with SCI, a multidisciplinary approach is required, as it is unlikely that a single approach, such as surgical intervention, pharmacotherapy or cellular transplantation, will suffice. High mobility group box 1 (HMGB1) is an inflammatory cytokine. Various studies have shown that HMGB1 plays a critical role in SCI and that inhibition of HMGB1 release may be a novel therapeutic target for SCI and may support spinal cord repair. In addition, HMGB1 has been associated with graft rejection in the early phase. Therefore, HMGB1 may be a promising therapeutic target for SCI transplant.


Morimoto-Yamashita Y.,Kagoshima University | Matsuo M.,Kagoshima University | Komatsuzawa H.,Kagoshima University | Kawahara K.-I.,Kagoshima University | And 4 more authors.
Medical Hypotheses | Year: 2011

The oral cavity is inhabited by over 500 different bacterial species. Dental caries and periodontitis are major bacterial infectious diseases in the oral cavity. Prunus mume Sieb. et Zucc., which is a variety of Japanese apricot known as Ume in Japanese, has been a traditional Japanese medicine for centuries, and is a familiar and commonly consumed food. The health benefits of Ume are now being widely recognized. Recent studies showed that MK615, an extract of compounds from Ume, has strong anticancer and anti-inflammatory effects. However, the potential role of MK615 in the antimicrobial field remains unknown. Therefore, we hypothesize that MK615 has antimicrobial activities against a range of oral bacterial pathogens. Here, we show that MK615 may be a potent inhibitor of the growth of some oral bacteria and an inhibitor of biofilm formation by Streptococcus mutans, the principal etiological agent of human dental caries. Our findings suggest that MK615 has potential as a therapeutic agent for treating and preventing oral diseases such as dental caries and periodontitis. © 2011 Elsevier Ltd.


Kikuchi K.,Yame Public General Hospital | Kikuchi K.,Kurume University | Takeshige N.,Kurume University | Miura N.,Kagoshima University | And 14 more authors.
Experimental and Therapeutic Medicine | Year: 2012

Free radicals play an important role in the pathogenesis of a variety of diseases; thus, they are an attractive target for therapeutic intervention in these diseases. Compounds capable of scavenging free radicals have been developed for this purpose and some, developed for the treatment of cerebral ischemic stroke, have progressed to clinical trials. One such scavenger, edaravone, is used to treat patients within 24 h of stroke. Edaravone, which can diffuse into many disease-affected organs, also shows protective effects in the heart, lung, intestine, liver, pancreas, kidney, bladder and testis. As well as scavenging free radicals, edaravone has anti-apoptotic, anti-necrotic and anti-cytokine effects in various diseases. Here, we critically review the literature on its clinical efficacy and examine whether edaravone should be considered a candidate for worldwide development, focusing on its effects on diseases other than cerebral infarction. Edaravone has been safely used as a free radical scavenger for more than 10 years; we propose that edaravone may offer a novel treatment option for several diseases.


Kikuchi K.,Yame Public General Hospital | Uchikado H.,Kurume University | Miyagi N.,Yame Public General Hospital | Morimoto Y.,Kagoshima University | And 10 more authors.
International Journal of Molecular Medicine | Year: 2011

Free radicals play major roles in the pathogenesis of tissue damage in many diseases and clinical conditions, and the removal of free radicals may offer a treatment option. Several modulators of free radical scavenger pathways have been developed and some have progressed to clinical trials. One such agent, edaravone, was approved in 2001 in Japan for the treatment of cerebral infarction. It has since been shown that edaravone can diffuse into many organs and, in addition to its effects on hydroxyl radical removal, edaravone modulates inflammatory processes, matrix metalloproteinase levels, nitric oxide production, apoptotic cell death, and necrotic cell death. Edaravone also exerts protective effects in a number of animal models of disease and tissue damage, including models of myocardial, lung, intestinal, liver, pancreatic and renal injury. Together with the proven safety of edaravone following 9 years of use as a modulator of free radical scavenging pathways in neurological disease, these additional effects of edaravone suggest that it may offer a novel treatment for several non-neurological diseases and clinical conditions in humans.


Chaichalotornkul S.,Mahidol University | Suvitayavat W.,Mahidol University | Sangalangkarn V.,Mahidol University | Nawa Y.,Sapporo Medical University | And 7 more authors.
EnvironmentAsia | Year: 2012

Environmental tobacco smoke (ETS) exposure is linked to carcinogenic, oxidative and inflammatory cellular reactions. Green tea polyphenol reportedly plays a role in the prevention of inflammation-related diseases. To evaluate the effects of green tea extract (GTE) on cellular location of High Mobility Group Box-1 (HMGB1) protein, we studied the lung tissue in rats exposed to cigarette smoke (CS). Rats were divided into three groups; CS, CSG, and C, which were groups of CS-treated only, CS-treated with GTE dietary supplement, and the control, respectively. Our findings by immunocytochemistry showed that abundant HMGB1 translocated from the nucleus to the cytoplasm in the lung tissues of rats that were exposed to CS, whereas HMGB1 was localized to the nuclei of CSG and C group. For in vitro studies, cotinine stimulated the secretion of HMGB1 in a dose and time dependent manner and the HMGB1 level was suppressed by GTE in murine macrophage cell lines. Our results could suggest that GTE supplementation which could suppress HMGB1 may offer a beneficial effect against diseases.


PubMed | Yame Public General Hospital
Type: Journal Article | Journal: International journal of molecular medicine | Year: 2011

Free radicals play major roles in the pathogenesis of tissue damage in many diseases and clinical conditions, and the removal of free radicals may offer a treatment option. Several modulators of free radical scavenger pathways have been developed and some have progressed to clinical trials. One such agent, edaravone, was approved in 2001 in Japan for the treatment of cerebral infarction. It has since been shown that edaravone can diffuse into many organs and, in addition to its effects on hydroxyl radical removal, edaravone modulates inflammatory processes, matrix metalloproteinase levels, nitric oxide production, apoptotic cell death, and necrotic cell death. Edaravone also exerts protective effects in a number of animal models of disease and tissue damage, including models of myocardial, lung, intestinal, liver, pancreatic and renal injury. Together with the proven safety of edaravone following 9 years of use as a modulator of free radical scavenging pathways in neurological disease, these additional effects of edaravone suggest that it may offer a novel treatment for several non-neurological diseases and clinical conditions in humans.


PubMed | Yame Public General Hospital
Type: Journal Article | Journal: Medical hypotheses | Year: 2010

Acute stroke, including acute ischemic stroke (AIS) and acute hemorrhagic stroke, (AHS) is a common medical problem with particular relevance to the demographic changes in industrialized societies. In recent years, treatments for AIS have emerged, including thrombolysis with tissue plasminogen activator (t-PA). Although t-PA is the most effective currently available therapy, it is limited by a narrow therapeutic time window and side effects, and only 3% of all AIS patients receive thrombolysis. Edaravone was originally developed as a potent free radical scavenger and, since 2001, has been widely used to treat AIS in Japan. It was shown that edaravone extended the narrow therapeutic time window of t-PA in rats. The therapeutic time window is very important for the treatment of AIS, and early edaravone treatment is more effective. Thus, more AIS patients might be rescued by administering edaravone with t-PA. Meanwhile, edaravone attenuates AHS-induced brain edema, neurologic deficits and oxidative injury in rats. Although edaravone treatment is currently only indicated for AIS, it does offer neuroprotective effects against AHS in rats. Therefore, we hypothesize that early administration of edaravone can rescue AHS patients as well as AIS patients. Taken together, our findings suggest that edaravone should be immediately administered on suspicion of acute stroke, including AIS and AHS.


PubMed | Yame Public General Hospital
Type: Journal Article | Journal: Experimental and therapeutic medicine | Year: 2012

Historically, clinical outcomes following spinal cord injury (SCI) have been dismal. Severe SCI leads to devastating neurological deficits, and there is no treatment available that restores the injury-induced loss of function to a degree that an independent life can be guaranteed. To address all the issues associated with SCI, a multidisciplinary approach is required, as it is unlikely that a single approach, such as surgical intervention, pharmacotherapy or cellular transplantation, will suffice. High mobility group box 1 (HMGB1) is an inflammatory cytokine. Various studies have shown that HMGB1 plays a critical role in SCI and that inhibition of HMGB1 release may be a novel therapeutic target for SCI and may support spinal cord repair. In addition, HMGB1 has been associated with graft rejection in the early phase. Therefore, HMGB1 may be a promising therapeutic target for SCI transplant patients. We hypothesize that inhibition of HMGB1 release rescues patients with SCI. Taken together, our findings suggest that anti-HMGB1 monoclonal antibodies or short hairpin RNA-mediated HMGB1 could be administered for spinal cord repair in SCI patients.


PubMed | Yame Public General Hospital
Type: Journal Article | Journal: Experimental and therapeutic medicine | Year: 2012

Edaravone was originally developed as a potent free radical scavenger and has been widely used to treat cerebral infarction in Japan since 2001. Several free radical scavengers have been developed and some of them have progressed to clinical trials for the treatment of cerebral infarction. One such scavenger, edaravone, has been approved by the regulatory authority in Japan for the treatment of patients with cerebral infarction. Of particular interest is the ability of edaravone to diffuse into the central nervous system in various neurologic diseases. Aside from its hydroxyl radical scavenging effect, edaravone has been found to have beneficial effects on inflammation, matrix metalloproteinases, nitric oxide production and apoptotic cell death. Concordantly, edaravone has been found to have neuroprotective effects in a number of animal models of disease, including stroke, spinal cord injury, traumatic brain injury, neurodegenerative diseases and brain tumors. The proven safety of edaravone following 9 years of use as a free radical scavenger suggests that it may have potential for development into an effective treatment of multiple neurologic conditions in humans.


PubMed | Yame Public General Hospital
Type: Journal Article | Journal: Experimental and therapeutic medicine | Year: 2012

Free radicals play an important role in the pathogenesis of a variety of diseases; thus, they are an attractive target for therapeutic intervention in these diseases. Compounds capable of scavenging free radicals have been developed for this purpose and some, developed for the treatment of cerebral ischemic stroke, have progressed to clinical trials. One such scavenger, edaravone, is used to treat patients within 24 h of stroke. Edaravone, which can diffuse into many disease-affected organs, also shows protective effects in the heart, lung, intestine, liver, pancreas, kidney, bladder and testis. As well as scavenging free radicals, edaravone has anti-apoptotic, anti-necrotic and anti-cytokine effects in various diseases. Here, we critically review the literature on its clinical efficacy and examine whether edaravone should be considered a candidate for worldwide development, focusing on its effects on diseases other than cerebral infarction. Edaravone has been safely used as a free radical scavenger for more than 10 years; we propose that edaravone may offer a novel treatment option for several diseases.

Loading Yame Public General Hospital collaborators
Loading Yame Public General Hospital collaborators