Time filter

Source Type

Sunnyvale, CA, United States

Yahoo Inc. is an American multinational technology company headquartered in Sunnyvale, California Wikipedia.

Li W.,University of California at San Diego | Mahadevan V.,Yahoo! | Vasconcelos N.,University of California at San Diego
IEEE Transactions on Pattern Analysis and Machine Intelligence | Year: 2014

The detection and localization of anomalous behaviors in crowded scenes is considered, and a joint detector of temporal and spatial anomalies is proposed. The proposed detector is based on a video representation that accounts for both appearance and dynamics, using a set of mixture of dynamic textures models. These models are used to implement 1) a center-surround discriminant saliency detector that produces spatial saliency scores, and 2) a model of normal behavior that is learned from training data and produces temporal saliency scores. Spatial and temporal anomaly maps are then defined at multiple spatial scales, by considering the scores of these operators at progressively larger regions of support. The multiscale scores act as potentials of a conditional random field that guarantees global consistency of the anomaly judgments. A data set of densely crowded pedestrian walkways is introduced and used to evaluate the proposed anomaly detector. Experiments on this and other data sets show that the latter achieves state-of-the-art anomaly detection results. © 1979-2012 IEEE. Source

Koren Y.,Yahoo!
Communications of the ACM | Year: 2010

Customer preferences for products are drifting over time. Product perception and popularity are constantly changing as new selection emerges. Similarly, customer inclinations are evolving, leading them to ever redefine their taste. Thus, modeling temporal dynamics is essential for designing recommender systems or general customer preference models. However, this raises unique challenges. Within the ecosystem intersecting multiple products and customers, many different characteristics are shifting simultaneously, while many of them influence each other and often those shifts are delicate and associated with a few data instances. This distinguishes the problem from concept drift explorations, where mostly a single concept is tracked. Classical time-window or instance decay approaches cannot work, as they lose too many signals when discarding data instances. A more sensitive approach is required, which can make better distinctions between transient effects and long-term patterns. We show how to model the time changing behavior throughout the life span of the data. Such a model allows us to exploit the relevant components of all data instances, while discarding only what is modeled as being irrelevant. Accordingly, we revamp two leading collaborative filtering recommendation approaches. Evaluation is made on a large movie-rating dataset underlying the Netflix Prize contest. Results are encouraging and better than those previously reported on this dataset. In particular, methods described in this paper play a significant role in the solution that won the Netflix contest. © 2010 ACM. Source

Koren Y.,Yahoo!
ACM Transactions on Knowledge Discovery from Data | Year: 2010

Recommender systems provide users with personalized suggestions for products or services. These systems often rely on collaborating filtering (CF), where past transactions are analyzed in order to establish connections between users and products. The most common approach to CF is based on neighborhood models, which originate from similarities between products or users. In this work we introduce a new neighborhood model with an improved prediction accuracy. Unlike previous approaches that are based on heuristic similarities,we model neighborhood relations by minimizing a global cost function. Further accuracy improvements are achieved by extending the model to exploit both explicit and implicit feedback by the users. Past models were limited by the need to compute all pairwise similarities between items or users, which grow quadratically with input size. In particular, this limitation vastly complicates adopting user similarity models, due to the typical large number of users. Our new model solves these limitations by factoring the neighborhood model, thus making both item-item and user-user implementations scale linearly with the size of the data. The methods are tested on the Netflix data, with encouraging results. © 2010 ACM. Source

Bax E.,Yahoo!
IEEE Transactions on Information Theory | Year: 2012

This paper presents a method to compute probably approximately correct error bounds for k -nearest neighbor classifiers. The method withholds some training data as a validation set to bound the error rate of the holdout classifier that is based on the remaining training data. Then, the method uses the validation set to bound the difference in error rates between the holdout classifier and the classifier based on all training data. The result is a bound on the out-of-sample error rate for the classifier based on all training data. © 2011 IEEE. Source

Mahadevan V.,Yahoo! | Vasconcelos N.,University of California at San Diego
IEEE Transactions on Pattern Analysis and Machine Intelligence | Year: 2013

A biologically inspired discriminant object tracker is proposed. It is argued that discriminant tracking is a consequence of top-down tuning of the saliency mechanisms that guide the deployment of visual attention. The principle of discriminant saliency is then used to derive a tracker that implements a combination of center-surround saliency, a spatial spotlight of attention, and feature-based attention. In this framework, the tracking problem is formulated as one of continuous target-background classification, implemented in two stages. The first, or learning stage, combines a focus of attention (FoA) mechanism, and bottom-up saliency to identify a maximally discriminant set of features for target detection. The second, or detection stage, uses a feature-based attention mechanism and a target-tuned top-down discriminant saliency detector to detect the target. Overall, the tracker iterates between learning discriminant features from the target location in a video frame and detecting the location of the target in the next. The statistics of natural images are exploited to derive an implementation which is conceptually simple and computationally efficient. The saliency formulation is also shown to establish a unified framework for classifier design, target detection, automatic tracker initialization, and scale adaptation. Experimental results show that the proposed discriminant saliency tracker outperforms a number of state-of-the-art trackers in the literature. © 1979-2012 IEEE. Source

Discover hidden collaborations