Time filter

Source Type

Xiamen, China

Xiamen University , colloquially known as Xia Da ". The university is one of many comprehensive universities directly administered by the Chinese Ministry of Education. In 1995 it was included in the list of the 211 Project for the state key construction; in 2000 it became one of China's higher-level universities designated for the state key construction of the 985 Project.According to University Undergraduates Teaching Assessment and Chinese Universities Evaluation Standings, the university is ranked 11th in China and has maintained the top 20 ranking in China, among which 6 subjects reach A++ level, including economics and management,fine art, law, chemistry, journalism, communication and mathematics.In addition,the school of management is accredited by EQUIS and AMBA. Wikipedia.

Gu W.-M.,Xiamen University
Astrophysical Journal | Year: 2015

Based on the no-outflow assumption, we investigate steady-state, axisymmetric, optically thin accretion flows in spherical coordinates. By comparing the vertically integrated advective cooling rate with the viscous heating rate, we find that the former is generally less than 30% of the latter, which indicates that the advective cooling itself cannot balance the viscous heating. As a consequence, for radiatively inefficient flows with low accretion rates such as M ≲ 10-3 MEdd, where MEdd is the Eddington accretion rate, the viscous heating rate will be larger than the sum of the advective cooling rate and the radiative cooling one. Thus, no thermal equilibrium can be established under the no-outflow assumption. We therefore argue that in such cases outflows ought to occur and take away more than 70% of the thermal energy generated by viscous dissipation. Similarly, for optically thick flows with extremely large accretion rates such as M ≳ 10 MEdd, outflows should also occur owing to the limited advection and the low efficiency of radiative cooling. Our results may help to understand the mechanism of outflows found in observations and numerical simulations. © 2015. The American Astronomical Society. All rights reserved.

Zhao Y.,Xiamen University | Liang W.,Hefei University of Technology
Chemical Society Reviews | Year: 2012

This tutorial review primarily illustrates rate theories for charge transfer and separation in organic molecules for solar cells. Starting from the Fermi's golden rule for weak electronic coupling, we display the microcanonical and canonical rates, as well as the relationship with the Marcus formula. The fluctuation effect of bridges on the rate is further emphasized. Then, several rate approaches beyond the perturbation limit are revealed. Finally, we discuss the electronic structure theory for calculations of the electronic coupling and reorganization energy that are two key parameters in charge transfer, and show several applications. © 2012 The Royal Society of Chemistry.

Nie L.,U.S. National Institutes of Health | Nie L.,Xiamen University | Chen X.,U.S. National Institutes of Health
Chemical Society Reviews | Year: 2014

Photoacoustic tomography (PAT) can offer structural, functional and molecular contrasts at scalable observation level. By ultrasonically overcoming the strong optical scattering, this imaging technology can reach centimeters penetration depth while retaining high spatial resolution in biological tissue. Recent extensive research has been focused on developing new contrast agents to improve the imaging sensitivity, specificity and efficiency. These emerging materials have substantially accelerated PAT applications in signal sensing, functional imaging, biomarker labeling and therapy monitoring etc. Here, the potentials of different optical probes as PAT contrast agents were elucidated. We first describe the instrumental embodiments and the measured functional parameters, then focus on emerging contrast agent-based PAT applications, and finally discuss the challenges and prospects. This journal is © the Partner Organisations 2014.

Hong W.,Xiamen University | Hong W.,Institute of Molecular and Cell Biology | Lev S.,Weizmann Institute of Science
Trends in Cell Biology | Year: 2014

The fusion of transport vesicles with their target membranes is fundamental for intracellular membrane trafficking and diverse physiological processes and is driven by the assembly of functional soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complexes. Prior to fusion, transport vesicles are physically linked to their target membranes by various tethering factors. Recent studies suggest that tethering factors also positively regulate the assembly of functional SNARE complexes, thereby coupling tethering with fusion events. This coupling is mediated, at least in part, by direct physical interactions between tethering factors, SNAREs, and Sec1/Munc18 (SM) proteins. In this review we summarize recent progress in understanding the roles of tethering factors in the assembly of specific and functional SNARE complexes driving membrane-fusion events. © 2013 Elsevier Ltd.

Long L.-S.,Xiamen University
CrystEngComm | Year: 2010

Crystal engineering is the rational design and assembly of solid-state structures with desired properties via the manipulation of intermolecular interactions, hydrogen bonding and metal-ligand complexation in particular. The heart of crystal engineering is to control the ordering of the building blocks, be they molecular or ionic, toward a specific disposition in the solid state. The relatively weak strength of intermolecular forces with respect to chemical bonding renders the assembly of supramolecular constructs sensitive to external physical and chemical stimuli, with pH condition of the reaction mixture being arguably the most prominent and extensively observed. Using selected examples of constructing metal-organic architectures from recent literature, the influences of pH on the specific ligand forms, the generation and metal coordination of hydroxo ligands, ligand transformation promoted by pH condition changes, pH-dependent kinetics of crystallization of a number of metal-organic architectures are discussed. Current status of this particular areas of research in supramolecular chemistry and materials are assessed and personal perspectives as to toward what directions should this chemistry head are elaborated. © 2010 The Royal Society of Chemistry.

Discover hidden collaborations