Entity

Time filter

Source Type

Westwood, MA, United States

Fan S.,Sun Yat Sen University | Chen W.-X.,Sun Yat Sen University | Lv X.-B.,Sun Yat Sen University | Tang Q.-L.,Sun Yat Sen University | And 13 more authors.
Cancer Letters | Year: 2015

Mitochondria play an important role in the initiation of apoptosis. However, whether cisplatin can induce apoptosis by initiating a mitochondrial fission pathway and the mechanism underlying this effect remain poorly understood. In this study, we show that the mitochondrial fission protein FIS1 is upregulated upon cisplatin treatment in tongue squamous cell carcinoma (TSCC) cells. FIS1 knockdown can attenuate mitochondrial fission and cisplatin sensitivity. We found that FIS1 is a direct target of miR-483-5p and that miR-483-5p can inhibit mitochondrial fission and cisplatin sensitivity in vitro and in vivo. Furthermore, we found that miR-483-5p and FIS1 are significantly associated with cisplatin sensitivity and with overall survival in patients with TSCC in a retrospective analysis of multiple centers. This study revealed that a novel mitochondrial fission pathway composed of miR-483-5p and FIS1 regulates cisplatin sensitivity. The modulation of miR-483-5p and FIS1 levels may provide a new approach for increasing cisplatin sensitivity. © 2015 Elsevier Ireland Ltd. Source


Fan S.,Sun Yat Sen University | Liu B.,Sun Yat Sen University | Sun L.,Sun Yat Sen University | Lv X.,Sun Yat Sen University | And 24 more authors.
Oncotarget | Year: 2015

Cisplatin has been widely employed as a cornerstone chemotherapy treatment for a wide spectrum of solid neoplasms; increasing tumor responsiveness to cisplatin has been a topic of interest for the past 30 years. Strong evidence has indicated that mitochondrial fission participates in the regulation of apoptosis in many diseases; however, whether mitochondrial fission regulates cisplatin sensitivity remains poorly understood. Here, we show that MFF mediated mitochondrial fission and apoptosis in tongue squamous cell carcinoma (TSCC) cells after cisplatin treatment and that miR-593-5p was downregulated in this process. miR-593-5p attenuated mitochondrial fission and cisplatin sensitivity by targeting the 3' untranslated region sequence of MFF and inhibiting its translation. In exploring the underlying mechanism of miR-593-5p downregulation, we observed that BRCA1 transactivated miR-593-5p expression and attenuated cisplatin sensitivity in vitro. The BRCA1-miR-593-5p-MFF axis also affected cisplatin sensitivity in vivo. Importantly, in a retrospective analysis of multiple centers, we further found that the BRCA1-miR-593-5p-MFF axis was significantly associated with cisplatin sensitivity and the survival of patients with TSCC. Together, our data reveal a model for mitochondrial fission regulation at the transcriptional and post-transcriptional levels; we also reveal a new pathway for BRCA1 in determining cisplatin sensitivity through the mitochondrial fission program. Source


Ho N.,University of Massachusetts Medical School | Li A.,Xaverian Brothers High School | Li S.,University of Massachusetts Medical School | Zhang H.,University of Massachusetts Medical School
Pharmaceuticals | Year: 2012

Heat shock protein 90 (Hsp90) is a conserved and constitutively expressed molecular chaperone and it has been shown to stabilize oncoproteins and facilitate cancer development. Hsp90 has been considered as a therapeutic target for cancers and three classes of Hsp90 inhibitors have been developed: (1) benzoquinone ansamycin and its derivatives, (2) radicicol and its derivates, and (3) small synthetic inhibitors. The roles of these inhibitors in cancer treatment have been studied in laboratories and clinical trials, and some encouraging results have been obtained. Interestingly, targeting of Hsp90 has been shown to be effective in inhibition of cancer stem cells responsible for leukemia initiation and progression, providing a strategy for finding a cure. Because cancer stem cells are well defined in some human leukemias, we will focus on hematologic malignancies in this review. © 2012 by the authors; licensee MDPI, Basel, Switzerland. Source


Sun L.,Sun Yat Sen University | Liu B.,Sun Yat Sen University | Lin Z.,Sun Yat Sen University | Yao Y.,Sun Yat Sen University | And 12 more authors.
Molecular Cancer | Year: 2015

Background: Salivary Adenoid cystic carcinoma (SACC) patients with local invasion and lung metastasis are often resistant to conventional therapy such as operation, chemotherapy and radiotherapy. To explore the underling mechanisms, we studied the roles of miRNA in regulating invasiveness of SACC cells. Methods: MicroRNA profiling was done in SACC cells with microarray. MiRNA mimics or antisense oligonucleotide was transfected and invasiveness of SACC cells was evaluated by adhesion assay and transwell assay. The target gene of miRNA was identified by luciferase reporter assay and "rescue" experiment. Tumor metastasis was evaluated by BALB/c-nu mice xenografts. MiRNA and its target gene expression were identified by in-situ hybridization and immunohistochemistry respectively, in 302 patients from affiliated hospitals of Sun Yat-sen University and in 148 patients from affiliated hospitals of Central South University, and correlated to the clinicopathological status of the patients. Results: MiR-320a was down-regulated in high lung metastatic ACCM and SACC-LM cells compared with the corresponding low metastatic ACC2 and SACC-83 cells, and inhibited adhesion, invasion and migration of SACC cells by targeting integrin beta 3 (ITGB3). In vivo, enforced miR-320a expression suppressed metastasis of SACC xenografts. In the two independent sets, miR-320a was downregulated in primary SACCs with metastasis compared to those without metastasis, and low expression of this miRNA predicts poor patient survival and rapid metastasis. Multivariate analysis showed that miR-320a expression was an independent indicator of lung metastasis. Conclusions: MiR-320a inhibits metastasis in SACCs by targeting ITGB3 and may serve as a therapeutic target and prognostic marker in salivary cancers. © 2015 Sun et al.; licensee BioMed Central. Source


Sun L.,Sun Yat Sen University | Liu B.,Sun Yat Sen University | Lin Z.,Sun Yat Sen University | Yao Y.,Sun Yat Sen University | And 12 more authors.
Molecular Cancer | Year: 2015

Background: Salivary Adenoid cystic carcinoma (SACC) patients with local invasion and lung metastasis are often resistant to conventional therapy such as operation, chemotherapy and radiotherapy. To explore the underling mechanisms, we studied the roles of miRNA in regulating invasiveness of SACC cells. Methods: MicroRNA profiling was done in SACC cells with microarray. MiRNA mimics or antisense oligonucleotide was transfected and invasiveness of SACC cells was evaluated by adhesion assay and transwell assay. The target gene of miRNA was identified by luciferase reporter assay and "rescue" experiment. Tumor metastasis was evaluated by BALB/c-nu mice xenografts. MiRNA and its target gene expression were identified by in-situ hybridization and immunohistochemistry respectively, in 302 patients from affiliated hospitals of Sun Yat-sen University and in 148 patients from affiliated hospitals of Central South University, and correlated to the clinicopathological status of the patients. Results: MiR-320a was down-regulated in high lung metastatic ACCM and SACC-LM cells compared with the corresponding low metastatic ACC2 and SACC-83 cells, and inhibited adhesion, invasion and migration of SACC cells by targeting integrin beta 3 (ITGB3). In vivo, enforced miR-320a expression suppressed metastasis of SACC xenografts. In the two independent sets, miR-320a was downregulated in primary SACCs with metastasis compared to those without metastasis, and low expression of this miRNA predicts poor patient survival and rapid metastasis. Multivariate analysis showed that miR-320a expression was an independent indicator of lung metastasis. Conclusions: MiR-320a inhibits metastasis in SACCs by targeting ITGB3 and may serve as a therapeutic target and prognostic marker in salivary cancers. © 2015 Sun et al. Source

Discover hidden collaborations