Time filter

Source Type

Ma N.,Peking University | Zhao C.S.,Peking University | Nowak A.,Leibniz Institute for Tropospheric Research | Muller T.,Leibniz Institute for Tropospheric Research | And 17 more authors.
Atmospheric Chemistry and Physics | Year: 2011

The largest uncertainty in the estimation of climate forcing stems from atmospheric aerosols. In early spring and summer of 2009, two periods of in-situ measurements on aerosol physical and chemical properties were conducted within the HaChi (Haze in China) project at Wuqing, a town between Beijing and Tianjin in the North China Plain (NCP). Aerosol optical properties, including the scattering coefficient (σsp), the hemispheric back scattering coefficient (σbsp), the absorption coefficient (σap), as well as the single scattering albedo (‰), are presented. The diurnal and seasonal variations are analyzed together with meteorology and satellite data. The mean values of σsp, 550 nm of the dry aerosol in spring and summer are 280±253 and 379±251 Mm-1, respectively. The average σap for the two periods is respectively 47±38 and 43±27 Mm-1. The mean values of ω at the wavelength of 637 nm are 0.82±0.05 and 0.86±0.05 for spring and summer, respectively. The relative high levels of σsp and σbsp are representative of the regional aerosol pollution in the NCP. Pronounced diurnal cycle of σsp, σap and are found, mainly influenced by the evolution of boundary layer and the accumulation of local emissions during nighttime. The pollutants transported from the southwest of the NCP are more significant than that from the two megacities, Beijing and Tianjin, in both spring and summer. An optical closure experiment is conducted to better understand the uncertainties of the measurements. Good correlations (R 0.98) are found between the values measured by the nephelometer and the values calculated with a modified Mie model. The Monte Carlo simulation shows an uncertainty of about 30 % for the calculations. Considering all possible uncertainties of measurements, calculated σsp and σbsp agree well with the measured values, indicating a stable performance of instruments and thus reliable aerosol optical data. © 2011 Author(s).

Xu W.Y.,Peking University | Zhao C.S.,Peking University | Ran L.,Peking University | Deng Z.Z.,Peking University | And 9 more authors.
Atmospheric Chemistry and Physics | Year: 2011

North China Plain (NCP) is one of the most densely populated regions in China and has experienced enormous economic growth in the past decades. Its regional trace gas pollution has also become one of the top environmental concerns in China. Measurements of surface trace gases, including O3, NOx, SO2 and CO were carried out within the HaChi (Haze in China) project at Wuqing Meteorology Station, located between 2 mega-cities (Beijing and Tianjin) in the NCP, from 9 July 2009 to 21 January 2010. Detailed statistical analyses were made in order to provide information on the levels of the measured air pollutants and their characteristics. Gaseous air pollutant concentrations were also studied together with meteorological data and satellite data to help us better understand the causes of the observed variations in the trace gases during the field campaign. In comparison to measurements from other rural and background stations in the NCP, relatively high concentrations were detected in Wuqing, presumably due to regional mixing and transport of pollutants. Local meteorology had deterministic impacts on air pollution levels, which have to be accounted for when evaluating other effects on pollutant concentrations. Trace gas concentrations showed strong dependence on wind, providing information on regional pollution characteristics. O3 mixing ratio also showed clear dependencies on temperature and relative humidity. © 2011 Author(s).

Ran L.,Peking University | Zhao C.S.,Peking University | Xu W.Y.,Peking University | Lu X.Q.,Tianjin Academy of Environmental science | And 10 more authors.
Atmospheric Chemistry and Physics | Year: 2011

Measurements of ozone and its precursors conducted within the HaChi (Haze in China) project in summer 2009 were analyzed to characterize volatile organic compounds (VOCs) and their effects on ozone photochemical production at a suburban site in the North China Plain (NCP). Ozone episodes, during which running 8-h average ozone concentrations exceeding 80 ppbv lasted for more than 4 h, occurred on about two thirds of the observational days during the 5-week field campaign. This suggests continuous ozone exposure risks in this region in the summer. Average concentrations of nitrogen oxides (NOx) and VOCs are about 20 ppbv and 650 ppbC, respectively. On average, total VOC reactivity is dominated by anthropogenic VOCs. The contribution of biogenic VOCs to total ozone-forming potential, however, is also considerable in the daytime. Key species associated with ozone photochemical production are 2-butenes (18 %), isoprene (15 %), trimethylbenzenes (11 %), xylenes (8.5 %), 3-methylhexane (6 %), n-hexane (5 %) and toluene (4.5 %). Formation of ozone is found to be NOx-limited as indicated by measured VOCs/NOx ratios and further confirmed by a sensitivity study using a photochemical box model NCAR-MM. The Model simulation suggests that ozone production is also sensitive to changes in VOC reactivity under the NOx-limited regime, although this sensitivity depends strongly on how much NOx is present. © 2011 Author(s).

Discover hidden collaborations