Entity

Time filter

Source Type

Wuhan, China

why needs to organise itself Wuhan University of Technology - located in Wuhan, Hubei, China - was merged on May 27, 2000, from the former three universities, Wuhan University of Technology , Wuhan Transportation University and Wuhan Automotive Polytechnic University . WUT is one of the leading Chinese universities accredited by the Ministry of Education and one of the universities constructed in priority by the "State Project 211" for Chinese higher education institutions. Wikipedia.


Lei D.,Wuhan University of Technology
Computers and Industrial Engineering | Year: 2010

This paper presents the fuzzy job shop scheduling problem with availability constraints. The objective is to find a schedule that maximizes the minimum agreement index subject to periodic maintenance, non-resumable jobs and fuzzy due-date. A random key genetic algorithm (RKGA) is proposed for the problem, in which a novel random key representation, a new decoding strategy incorporating maintenance operation and discrete crossover (DX) are used. RKGA is applied to some fuzzy scheduling problem with availability constraints and compared with other algorithms. Computational results show that RKGA performs better than other algorithms. © 2010 Elsevier Ltd. All rights reserved.


Lei D.,Wuhan University of Technology
Applied Soft Computing Journal | Year: 2012

Fuzzy flexible job shop scheduling problem (FfJSP) is the combination of fuzzy scheduling and flexible scheduling in job shop environment, which is seldom investigated for its high complexity. We developed an effective co-evolutionary genetic algorithm (CGA) for the minimization of fuzzy makespan. In CGA, the chromosome of a novel representation consists of ordered operation list and machine assignment string, a new crossover operator and a modified tournament selection are proposed, and the population of job sequencing and the population of machine assignment independently evolve and cooperate for converging to the best solutions of the problem. CGA is finally applied and compared with other algorithms. Computational results show that CGA outperforms those algorithms compared. © 2012 Elsevier B.V.


Xiang Q.,Wuhan University of Technology | Yu J.,Wuhan University of Technology | Jaroniec M.,Kent State University
Chemical Society Reviews | Year: 2012

Graphene, a single layer of graphite, possesses a unique two-dimensional structure, high conductivity, superior electron mobility and extremely high specific surface area, and can be produced on a large scale at low cost. Thus, it has been regarded as an important component for making various functional composite materials. Especially, graphene-based semiconductor photocatalysts have attracted extensive attention because of their usefulness in environmental and energy applications. This critical review summarizes the recent progress in the design and fabrication of graphene-based semiconductor photocatalysts via various strategies including in situ growth, solution mixing, hydrothermal and/or solvothermal methods. Furthermore, the photocatalytic properties of the resulting graphene-based composite systems are also discussed in relation to the environmental and energy applications such as photocatalytic degradation of pollutants, photocatalytic hydrogen generation and photocatalytic disinfection. This critical review ends with a summary and some perspectives on the challenges and new directions in this emerging area of research (158 references). © 2012 The Royal Society of Chemistry.


Cao S.,Wuhan University of Technology | Yu J.,Wuhan University of Technology | Yu J.,King Abdulaziz University
Journal of Physical Chemistry Letters | Year: 2014

Graphitic carbon nitride (g-C3N4)-based photocatalysts have attracted dramatically increasing interest in the area of visible-light-induced photocatalytic hydrogen generation due to the unique electronic band structure and high thermal and chemical stability of g-C 3N4. This Perspective summarizes the recent significant advances on designing high-performance g-C3N4-based photocatalysts for hydrogen generation under visible-light irradiation. The rational strategies such as nanostructure design, band gap engineering, dye sensitization, and heterojunction construction are described. Finally, this Perspective highlights the ongoing challenges and opportunities for the future development of g-C3N4-based photocatalysts in the exciting research area. © 2014 American Chemical Society.


Zhou P.,Wuhan University of Technology | Yu J.,Wuhan University of Technology | Jaroniec M.,Kent State University
Advanced Materials | Year: 2014

The current rapid industrial development causes the serious energy and environmental crises. Photocatalyts provide a potential strategy to solve these problems because these materials not only can directly convert solar energy into usable or storable energy resources but also can decompose organic pollutants under solar-light irradiation. However, the aforementioned applications require photocatalysts with a wide absorption range, long-term stability, high charge-separation efficiency and strong redox ability. Unfortunately, it is often difficult for a single-component photocatalyst to simultaneously fulfill all these requirements. The artificial heterogeneous Z-scheme photocatalytic systems, mimicking the natural photosynthesis process, overcome the drawbacks of single-component photocatalysts and satisfy those aforementioned requirements. Such multi-task systems have been extensively investigated in the past decade. Especially, the all-solid-state Z-scheme photocatalytic systems without redox pair have been widely used in the water splitting, solar cells, degradation of pollutants and CO2 conversion, which have a huge potential to solve the current energy and environmental crises facing the modern industrial development. Thus, this review gives a concise overview of the all-solid-state Z-scheme photocatalytic systems, including their composition, construction, optimization and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Discover hidden collaborations