Entity

Time filter

Source Type


Tao X.,Chongqing Medical University | Liu J.,Chongqing Medical University | Chen L.,Wuhan General Hospital of Guangzhou Military Region | Zhou Y.,Chongqing Medical University | Tang K.,Chongqing Medical University
Cellular Physiology and Biochemistry | Year: 2015

Background/Aims: The rate of healing failure after surgical repair of chronic rotator cuff tears is considerably high. The aim of this study was to investigate the function of the zinc finger transcription factor early growth response 1 (EGR1) in the differentiation of tendon stem cells (TSCs) and in tendon formation, healing, and tendon tear repair using an animal model of rotator cuff repair. Methods: Tenocyte, adipocyte, osteocyte, and chondrocyte differentiation as well as the expression of related genes were determined in EGR1-overexpressing TSCs (EGR1-TSCs) using tissue-specific staining, immunofluorescence staining, quantitative PCR, and western blotting. A rabbit rotator cuff repair model was established, and TSCs and EGR1-TSCs in a fibrin glue carrier were applied onto repair sites. The rabbits were sacrificed 8 weeks after repair operation, and tissues were histologically evaluated and tenocyte-related gene expression was determined. Results: EGR1 induced tenogenic differentiation of TSCs and inhibited non-tenocyte differentiation of TSCs. Furthermore, EGR1 promoted tendon repair in a rabbit model of rotator cuff injury. The BMP12/Smad1/5/8 signaling pathway was involved in EGR1-induced tenogenic differentiation and rotator cuff tendon repair. Conclusion: EGR1 plays a key role in tendon formation, healing, and repair through BMP12/Smad1/5/8 pathway. EGR1-TSCs is a promising treatment for rotator cuff tendon repair surgeries. © 2015 S. Karger AG, Basel. Source


Liu J.,Chongqing Medical University | Chen L.,Wuhan General Hospital of Guangzhou Military Region | Zhou Y.,Chongqing Medical University | Liu X.,Chongqing Medical University | Tang K.,Chongqing Medical University
PLoS ONE | Year: 2014

Tendinopathy is characterized histopathologically by lipid accumulation and tissue calcification. Adipogenic and osteogenic differentiation of tendon stem cells (TSCs) are believed to play key roles in these processes. The major inflammatory mediator prostaglandin E2 (PGE2) has been shown to induce osteogenic differentiation of TSCs via bone morphogenetic protein-2 (BMP-2), and BMP-2 has also been implicated in adipogenic differentiation of stem cells. We therefore examined the mechanisms responsible for PGE2-induced adipogenesis in rat TSCs in vitro. Insulin-like growth factor-1 (IGF-1) mRNA and protein were significantly up-regulated in PGE2-stimulated TSCs, measured by quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Incubation with specific inhibitors of cAMP, cAMP-dependent protein kinase A (PKA), and CCAAT/enhancer binding protein-δ (CEBPδ) demonstrated that IGF-1 up-regulation occurred via a cAMP/PKA/CEBPδ pathway. Furthermore, neither IGF-1 nor BMP-2 alone was able to mediate adipogenic differentiation of TSCs, but IGF-1 together with BMP-2 significantly increased adipogenesis, indicated by Oil Red O staining. Moreover, knock-down of endogenous IGF-1 and BMP2 abolished PGE2-induced adipogenic differentiation. Phosphorylation of CREB and Smad by IGF-1 and BMP-2, respectively, were required for induction of the adipogenesis-related peroxisome proliferator-activated receptor γ2 (PPARγ2) gene and for adipogenic differentiation. In conclusion, IGF-1 and BMP-2 together mediate PGE2-induced adipogenic differentiation of TSCs in vitro via a CREB- and Smad-dependent mechanism. This improved understanding of the mechanisms responsible for tendinopathies may help the development of more effective therapies. © 2014 Liu et al. Source


Liu J.,Chongqing Medical University | Chen L.,Wuhan General Hospital of Guangzhou Military Region | zhou Y.,Chongqing Medical University | Liu X.,Chongqing Medical University | Tang K.,Chongqing Medical University
PloS one | Year: 2014

Tendinopathy is characterized histopathologically by lipid accumulation and tissue calcification. Adipogenic and osteogenic differentiation of tendon stem cells (TSCs) are believed to play key roles in these processes. The major inflammatory mediator prostaglandin E2 (PGE2) has been shown to induce osteogenic differentiation of TSCs via bone morphogenetic protein-2 (BMP-2), and BMP-2 has also been implicated in adipogenic differentiation of stem cells. We therefore examined the mechanisms responsible for PGE2-induced adipogenesis in rat TSCs in vitro. Insulin-like growth factor-1 (IGF-1) mRNA and protein were significantly up-regulated in PGE2-stimulated TSCs, measured by quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Incubation with specific inhibitors of cAMP, cAMP-dependent protein kinase A (PKA), and CCAAT/enhancer binding protein-δ (CEBPδ) demonstrated that IGF-1 up-regulation occurred via a cAMP/PKA/CEBPδ pathway. Furthermore, neither IGF-1 nor BMP-2 alone was able to mediate adipogenic differentiation of TSCs, but IGF-1 together with BMP-2 significantly increased adipogenesis, indicated by Oil Red O staining. Moreover, knock-down of endogenous IGF-1 and BMP2 abolished PGE2-induced adipogenic differentiation. Phosphorylation of CREB and Smad by IGF-1 and BMP-2, respectively, were required for induction of the adipogenesis-related peroxisome proliferator-activated receptor γ2 (PPARγ2) gene and for adipogenic differentiation. In conclusion, IGF-1 and BMP-2 together mediate PGE2-induced adipogenic differentiation of TSCs in vitro via a CREB- and Smad-dependent mechanism. This improved understanding of the mechanisms responsible for tendinopathies may help the development of more effective therapies. Source


Gao L.,Wuhan General Hospital of Guangzhou Military Region
Zhonghua nan ke xue = National journal of andrology | Year: 2011

To investigate the effects of staurosporine (ST) on the proliferation and apoptosis of prostate cancer PC-3 cells. Prostate cancer PC-3 cells were treated in vitro with ST at 10(-8) mol/L. The expressions of cyclin A and cyclin D1 proteins in the cells were detected by Western blot, the effect of ST on the proliferation of the cells determined by MTT assay and plate colony formation, the apoptosis of the cells examined by flow cytometry, and their morphological changes observed under the light microscope. ST treatment markedly decreased the expressions of cyclin A and cyclin D1 in the PC-3 cells, and significantly inhibited the growth of the PC-3 cells (19.35%) at 48 h. (F = 31.06, P < 0.01). The colony formation rate of the PC-3 cells was (37.10 +/- 3.43) % in the ST group, significantly lower than (64.80 +/- 4.34) % in the control (chi2 = 14.59, P < 0.05) and (62.80 +/- 4.36) % in the DMSO group (chi2 = 12.50, P < 0.05), while the apoptosis rate of the cells was remarkably higher in the ST group ([19.6 +/- 2.20] %) than in the control ([5.33 +/- 1.40] %) and the DMSO group ([5.50 +/- 0.96] %) (F = 104.36, P < 0.01). Under the light microscope, the ST-treated cells were round with indistinct margins as compared with those of the other two groups. ST could significantly inhibit the proliferation and induce the apoptosis of PC-3 cells. Source


Zhang X.M.,Wuhan General Hospital of Guangzhou Military Region
Zhonghua nan ke xue = National journal of andrology | Year: 2010

To screen serum biomarker candidates in prostate cancer with bone metastasis by two-dimensional gel electrophoresis (2-DGE) and mass spectrometry. Serum samples were obtained from 5 prostate cancer patients with bone metastasis, and another 5 without it. After depletion of the most abundant protein albumin from the serum, the samples were separated by 2-DGE and analyzed with the ImageMaster 2D Platinum software. The differentially expressed protein spots in the serum of those with bone metastases were identified by peptide-fingerprinting with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS). Compared with the serum samples from those without bone metastasis, 10 protein spot-features were found to be significantly increased and 5 significantly decreased, and the 3 identified proteins, Zn-alpha2-glycoprotein (ZAG), haptoglobin and apolipoprotein C-III, were all increased in the bone-metastasis group. The combination of 2-DGE and mass spectrometry is an ideal platform and an effective means for the differential proteomic analysis of human sera. The identified proteins involved in the formation and progression of prostate cancer bone metastasis might be applied as biomarkers for bone metastasis from prostate cancer. Source

Discover hidden collaborations