Worldwide Medicinal Chemistry

United States

Worldwide Medicinal Chemistry

United States
Time filter
Source Type

Arrowsmith C.H.,University of Toronto | Arrowsmith C.H.,Ontario Cancer Institute | Bountra C.,University of Oxford | Fish P.V.,Worldwide Medicinal Chemistry | And 2 more authors.
Nature Reviews Drug Discovery | Year: 2012

Epigenetic regulation of gene expression is a dynamic and reversible process that establishes normal cellular phenotypes but also contributes to human diseases. At the molecular level, epigenetic regulation involves hierarchical covalent modification of DNA and the proteins that package DNA, such as histones. Here, we review the key protein families that mediate epigenetic signalling through the acetylation and methylation of histones, including histone deacetylases, protein methyltransferases, lysine demethylases, bromodomain-containing proteins and proteins that bind to methylated histones. These protein families are emerging as druggable classes of enzymes and druggable classes of proteing-protein interaction domains. In this article, we discuss the known links with disease, basic molecular mechanisms of action and recent progress in the pharmacological modulation of each class of proteins. © 2012 Macmillan Publishers Limited. All rights reserved.

Vollmer S.,University of Dundee | Strickson S.,University of Dundee | Zhang T.,Dana-Farber Cancer Institute | Gray N.,Dana-Farber Cancer Institute | And 3 more authors.
Biochemical Journal | Year: 2017

We have developed the first assays that measure the protein kinase activities of interleukin- 1 receptor-associated kinase 1 (IRAK1) and IRAK4 reliably in human cell extracts, by employing Pellino1 as a substrate in conjunction with specific pharmacological inhibitors of IRAK1 and IRAK4. We exploited these assays to show that IRAK4 was constitutively active and that its intrinsic activity towards Pellino1 was not increased significantly by stimulation with interleukin-1 (IL-1) in IL-1R-expressing HEK293 cells, Pam3CSK4- stimulated human THP1 monocytes or primary human macrophages. Our results, in conjunction with those of other investigators, suggest that the IL-1-stimulated trans-autophosphorylation of IRAK4 is initiated by the myeloid differentiation primary response gene 88-induced dimerization of IRAK4 and is not caused by an increase in the intrinsic catalytic activity of IRAK4. In contrast with IRAK4, we found that IRAK1 was inactive in unstimulated cells and converted into an active protein kinase in response to IL-1 or Pam3CSK4 in human cells. Surprisingly, the IL-1-stimulated activation of IRAK1 was not affected by pharmacological inhibition of IRAK4 and not reversed by dephosphorylation and/or deubiquitylation, suggesting that IRAK1 catalytic activity is not triggered by a covalent modification but by an allosteric mechanism induced by its interaction with IRAK4. © 2017 The Author(s).

Kalgutkar A.S.,Pharmacokinetics | Kalgutkar A.S.,Pfizer | Ryder T.F.,Pharmacokinetics | Walker G.S.,Pharmacokinetics | And 5 more authors.
Drug Metabolism and Disposition | Year: 2013

The current study examined the bioactivation potential of ghrelin receptor inverse agonists, 1-{2-[2-chloro-4-(2H-1,2,3-triazol-2-yl)benzyl]- 2,7-diazaspiro[3.5]nonan-7-yl}-2-(imidazo[2,1-b]thiazol-6- yl)ethanone (1) and 1-{2-[2-chloro-4-(2H-1,2,3-triazol-2-yl)benzyl]-2,7- diazaspiro[3.5]nonan-7-yl}- 2-(2-methylimidazo[2,1-b]thiazol-6-yl) ethanone (2), containing a fused imidazo[2,1-b]thiazole motif in the core structure. Both compounds underwent oxidative metabolism in NADPH- and glutathione-supplemented human liver microsomes to yield glutathione conjugates, which was consistent with their bioactivation to reactive species. Mass spectral fragmentation and NMR analysis indicated that the site of attachment of the glutathionyl moiety in the thiol conjugates was on the thiazole ring within the bicycle. Two glutathione conjugates were discerned with the imidazo[2,1-b]thiazole derivative 1. One adduct was derived from the Michael addition of glutathione to a putative S-oxide metabolite of 1, whereas, the second adduct was formed via the reaction of a second glutathione molecule with the initial glutathione- S-oxide adduct. In the case of the 2-methylimidazo[2,1-b]thiazole analog 2, glutathione conjugation occurred via an oxidative desulfation mechanism, possibly involving thiazole ring epoxidation as the rate-limiting step. Additional insights into the mechanism were obtained via 18O exchange and trapping studies with potassium cyanide. The mechanistic insights into the bioactivation pathways of 1 and 2 allowed the deployment of a rational chemical intervention strategy that involved replacement of the thiazole ring with a 1,2,4-thiadiazole group to yield 2-[2-chloro-4-(2H-1,2,3-triazol- 2-yl)benzyl]-2,7-diazaspiro[3.5]nonan-7- yl)-2-(2-methylimidazo[2,1- b][1,3,4]thiadiazol-6-yl)ethanone (3). These structural changes not only abrogated the bioactivation liability but also retained the attractive pharmacological attributes of the prototype agents. © 2013 by The American Society for Pharmacology.

Bungay P.J.,Pfizer | Tweedy S.,Clinical Research | Howe D.C.,Clinical Research | Gibson K.R.,Worldwide Medicinal Chemistry | And 2 more authors.
Drug Metabolism and Disposition | Year: 2011

The recently discovered selective nonsteroidal progesterone receptor (PR) antagonist 4-[3-cyclopropyl-1-(methylsulfonylmethyl)-5-methyl-1H-pyrazol-4-yl] oxy-2,6-dimethylbenzonitrile (PF-02413873) was characterized in metabolism studies in vitro, in preclinical pharmacokinetics in rat and dog, and in an initial pharmacokinetic study in human volunteers. Clearance (CL) of PF-02413873 was found to be high in rat (84 ml · min -1 · kg -1) and low in dog (3.8 ml · min -1 · kg -1), consistent with metabolic stability determined in liver microsomes and hepatocytes in these species. In human, CL was low in relation to hepatic blood flow, consistent with metabolic stability in human in vitro systems, where identified metabolites suggested predominant cytochrome P450 (P450)-catalyzed oxidative metabolism. Prediction of CL using intrinsic CL determined in human liver microsomes (HLM), recombinant human P450 enzymes, and single species scaling (SSS) from pharmacokinetic studies showed that dog SSS and HLM scaling provided the closest estimates of CL of PF-02413873 in human. These CL estimates were combined with a physiologically based pharmacokinetic (PBPK) model to predict pharmacokinetic profiles after oral suspension administration of PF-02413873 in fasted and fed states in human. Predicted plasma concentration versus time profiles were found to be similar to those observed in human over the PF-02413873 dose range 50 to 500 mg and captured the enhanced exposure in fed subjects. This case study of a novel nonsteroidal PR antagonist underlines the utility of PBPK modeling techniques in guiding prediction confidence and design of early clinical trials of novel chemical agents. Copyright © 2011 by The American Society for Pharmacology and Experimental Therapeutics.

PubMed | Pfizer, Structural Biology, Primary Pharmacology Group, Metabolic and Endocrine Diseases Research Unit and 2 more.
Type: Journal Article | Journal: Bioorganic & medicinal chemistry letters | Year: 2015

A novel series of spirocyclic-diamine based, isoform non-selective inhibitors of acetyl-CoA carboxylase (ACC) is described. These spirodiamine derivatives were discovered by design of a library to mimic the structural rigidity and hydrogen-bonding pattern observed in the co-crystal structure of spirochromanone inhibitor I. The lead compound 3.5.1 inhibited de novo lipogenesis in rat hepatocytes, with an IC50 of 0.30 M.

PubMed | Pharmacokinetics, Metabolic &Endocrine Disease Research Unit and Worldwide Medicinal Chemistry
Type: | Journal: Scientific reports | Year: 2015

Citrate is a key regulatory metabolic intermediate as it facilitates the integration of the glycolysis and lipid synthesis pathways. Inhibition of hepatic extracellular citrate uptake, by blocking the sodium-coupled citrate transporter (NaCT or SLC13A5), has been suggested as a potential therapeutic approach to treat metabolic disorders. NaCT transports citrate from the blood into the cell coupled to the transport of sodium ions. The studies herein report the identification and characterization of a novel small dicarboxylate molecule (compound 2) capable of selectively and potently inhibiting citrate transport through NaCT, both in vitro and in vivo. Binding and transport experiments indicate that 2 specifically binds NaCT in a competitive and stereosensitive manner, and is recognized as a substrate for transport by NaCT. The favorable pharmacokinetic properties of 2 permitted in vivo experiments to evaluate the effect of inhibiting hepatic citrate uptake on metabolic endpoints.

PubMed | Pfizer, Pharmacokinetics and WorldWide Medicinal Chemistry
Type: Journal Article | Journal: Bioorganic & medicinal chemistry letters | Year: 2015

A 1,2,4-triazole motif was employed as a bioisostere for the ester commonly used in muscarinic antagonists, and subsequent integrative conjugation to a 2 agonist quinolinone furnished a new class of bifunctional MABAs for the treatment of COPD. Medicinal chemistry optimization using the principles of inhalation by design furnished a clinical candidate with desirable pharmacological, pharmacokinetic and biopharmaceutical properties.

Millan D.S.,Worldwide Medicinal Chemistry | Bunnage M.E.,Worldwide Medicinal Chemistry | Burrows J.L.,Sandwich | Butcher K.J.,Worldwide Medicinal Chemistry | And 14 more authors.
Journal of Medicinal Chemistry | Year: 2011

This paper describes the identification and optimization of a novel series of DFG-out binding p38 inhibitors as inhaled agents for the treatment of chronic obstructive pulmonary disease. Structure based drug design and "inhalation by design" principles have been applied to the optimization of the lead series exemplied by compound 1a. Analogues have been designed to be potent and selective for p38, with an emphasis on slow enzyme dissociation kinetics to deliver prolonged lung p38 inhibition. Pharmacokinetic properties were tuned with high intrinsic clearance and low oral bioavailability in mind, to minimize systemic exposure and reduce systemically driven adverse events. High CYP mediated clearance and glucuronidation were targeted to achieve high intrinsic clearance coupled with multiple routes of clearance to minimize drug-drug interactions. Furthermore, pharmaceutical properties such as stability, crystallinity, and solubility were considered to ensure compatibility with a dry powder inhaler. 1ab (PF-03715455) was subsequently identified as a clinical candidate from this series with efficacy and safety profiles confirming its potential as an inhaled agent for the treatment of COPD. © 2011 American Chemical Society.

Luerman G.C.,Pfizer | Nguyen C.,Structural Biology and Biophysics | Samaroo H.,Pfizer | Loos P.,Pfizer | And 8 more authors.
Journal of Neurochemistry | Year: 2014

Genetic mutations in leucine-rich repeat kinase 2 (LRRK2) have been linked to autosomal dominant Parkinson's disease. The most prevalent mutation, G2019S, results in enhanced LRRK2 kinase activity that potentially contributes to the etiology of Parkinson's disease. Consequently, disease progression is potentially mediated by poorly characterized phosphorylation-dependent LRRK2 substrate pathways. To address this gap in knowledge, we transduced SH-SY5Y neuroblastoma cells with LRRK2 G2019S via adenovirus, then determined quantitative changes in the phosphoproteome upon LRRK2 kinase inhibition (LRRK2-IN-1 treatment) using stable isotope labeling of amino acids in culture combined with phosphopeptide enrichment and LC-MS/MS analysis. We identified 776 phosphorylation sites that were increased or decreased at least 50% in response to LRRK2-IN-1 treatment, including sites on proteins previously known to associate with LRRK2. Bioinformatic analysis of those phosphoproteins suggested a potential role for LRRK2 kinase activity in regulating pro-inflammatory responses and neurite morphology, among other pathways. In follow-up experiments, LRRK2-IN-1 inhibited lipopolysaccharide-induced tumor necrosis factor alpha (TNFα) and C-X-C motif chemokine 10 (CXCL10) levels in astrocytes and also enhanced multiple neurite characteristics in primary neuronal cultures. However, LRRK2-IN-1 had almost identical effects in primary glial and neuronal cultures from LRRK2 knockout mice. These data suggest LRRK2-IN-1 may inhibit pathways of perceived LRRK2 pathophysiological function independently of LRRK2 highlighting the need to use multiple pharmacological tools and genetic approaches in studies determining LRRK2 function. © 2013 International Society for Neurochemistry.

PubMed | Pfizer and Worldwide Medicinal Chemistry.
Type: | Journal: Nature communications | Year: 2016

Inhibition of -secretase BACE1 is considered one of the most promising approaches for treating Alzheimers disease. Several structurally distinct BACE1 inhibitors have been withdrawn from development after inducing ocular toxicity in animal models, but the target mediating this toxicity has not been identified. Here we use a clickable photoaffinity probe to identify cathepsin D (CatD) as a principal off-target of BACE1 inhibitors in human cells. We find that several BACE1 inhibitors blocked CatD activity in cells with much greater potency than that displayed in cell-free assays with purified protein. Through a series of exploratory toxicology studies, we show that quantifying CatD target engagement in cells with the probe is predictive of ocular toxicity in vivo. Taken together, our findings designate off-target inhibition of CatD as a principal driver of ocular toxicity for BACE1 inhibitors and more generally underscore the power of chemical proteomics for discerning mechanisms of drug action.

Loading Worldwide Medicinal Chemistry collaborators
Loading Worldwide Medicinal Chemistry collaborators