Entity

Time filter

Source Type

Gwangju, South Korea

Ahn J.,Korea Food Research Institute | Ahn J.,Korean University of Science and Technology | Lee H.,Korea Food Research Institute | Jang J.,Korea Food Research Institute | And 4 more authors.
Food and Chemical Toxicology | Year: 2013

Licorice (Glycyrrhiza glabra Linne) is a well-known medicinal plant and glabridin is an isoflavan isolated from licorice. In this study, we investigated the anti-obesity effect of glabridin and glabridin-rich supercritical fluid extract of licorice (LSC). Glabridin effectively inhibited adipogenesis in 3T3-L1 cells. Moreover, LSC showed inhibitory effect on adipogenesis in a dose-dependent manner. The inhibitory effect of LSC resulted from inhibiting the induction of the transcriptional factors CCAAT enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma. Then we fed mice with high-fat diet containing none, 0.1% and 0.25% LSC for 8. weeks to explore the anti-obesity effect of LSC in vivo. LSC significantly reduced weight gain by high-fat diet in a dose-dependent manner. The reductions of the hypertrophy of white adipose tissue and of fat cell size were also observed. In the liver, LSC supplementation effectively inhibited high-fat diet-induced hepatic steatosis through downregulation of gluconeogenesis related phosphoenolpyruvate carboxykinase and glucose 6-phosphatase and upregulation of the β-oxidation related carnitine palmitoyltransferase 1. Taken together, our results suggest that glabridin and glabridin-rich licorice extract would be effective anti-obesity agents. © 2012 Elsevier Ltd. Source


Khan N.,Chosun University | Choi J.Y.,Chosun University | Nho E.Y.,Chosun University | Jamila N.,Universiti Sains Malaysia | And 4 more authors.
Food Chemistry | Year: 2014

This study aimed at analyzing the concentrations of 23 minor and trace elements in aromatic spices by inductively coupled plasma-mass spectrometry (ICP-MS), after wet digestion by microwave system. The analytical method was validated by linearity, detection limits, precision, accuracy and recovery experiments, obtaining satisfactory values in all cases. Results indicated the presence of variable amounts of both minor and trace elements in the selected aromatic spices. Manganese was high in cinnamon (879.8 μg/g) followed by cardamom (758.1 μg/g) and clove (649.9 μg/g), strontium and zinc were high in ajwain (489.9 μg/g and 84.95 μg/g, respectively), while copper was high in mango powder (77.68 μg/g). On the whole some of the minor and essential trace elements were found to have good nutritional contribution in accordance to RDA. The levels of toxic trace elements, including As, Cd, and Pb were very low and did not found to pose any threat to consumers. © 2014 Elsevier Ltd. All rights reserved. Source


Park E.-J.,Kyung Hee University | Park E.-J.,Jeju National University | Chun J.,Seoul National University | Cha C.-J.,Chung - Ang University | And 3 more authors.
Food Microbiology | Year: 2012

Kimchi, a food made of fermented vegetables, is densely populated by indigenous microorganisms that originate from the raw ingredients under normal conditions. Most microbiological studies on kimchi have been on the most popular dish, baechu-kimchi (Chinese cabbage kimchi). Therefore, relatively little is known about the various other kinds of kimchi (depending on the region, season, main ingredient, starter culture inoculation and recipe). In this study, we collected 100 samples periodically during the fermentation of ten representative kinds of kimchi (including starter-inoculated kimchi) that were stored in the refrigerator (4°C) during the 30-35 days fermentation period. The multiplex barcoded pyrosequencing of a hypervariable V1-V3 region of the 16S ribosomal RNA (rRNA) gene tagged with sample-specific barcodes for multiplex identifiers was employed for bacterial community profiling. We found that bacterial communities differed between starter-inoculated and non-inoculated kimchi at the early stages of fermentation, but overall there were no significant differences in the late phases. Also, the diversity and richness of bacterial communities varied depending on the various types of kimchi, and these differences could largely be explained by the major ingredients and the manufacture processes of each types of kimchi. This study provides the comprehensive understanding of the factors influencing the biodiversity of the kimchi ecosystem. © 2011 Elsevier Ltd. Source


Jo E.-J.,Gwangju Institute of Science and Technology | Mun H.,Gwangju Institute of Science and Technology | Kim S.-J.,World Institute of Kimchi | Shim W.-B.,Gyeongsang National University | Kim M.-G.,Gwangju Institute of Science and Technology
Food Chemistry | Year: 2016

We report a chemiluminescence resonance energy transfer (CRET) aptasensor for the detection of ochratoxin A (OTA) in roasted coffee beans. The aptamer sequences used in this study are 5′-DNAzyme-Linker-OTA aptamer-3′-dabcyl. Dabcyl at the end of the OTA aptamer region plays as a quencher in CRET aptasensor. When hemin and OTA are added, the dabcyl-labeled OTA aptamer approaches to the G-quadruplex-hemin complex by formation of the G-quadruplex-OTA complex. The G-quadruplex-hemin complexes possess horseradish peroxidase (HRP)-like activity, and therefore, the HRP-mimicking DNAzyme (HRPzyme) catalyzes peroxidation in the presence of luminol and H2O2. Resonance energy transfer between luminol (donor) and dabcyl (acceptor) enables quenching of chemiluminescence signals. The signal decreases with increasing the concentration of OTA within the range of 0.1-100 ng mL-1 (limit of detection 0.22 ng mL-1), and the level of recovery of the respective 1 ng mL-1 and 10 ng mL-1 spiked coffee samples was 71.5% and 93.3%. These results demonstrated the potential of the proposed method for OTA analysis in diverse foods. © 2015 Elsevier Ltd. All rights reserved. Source


Kim D.-I.,Chonnam National University | Park M.J.,Chonnam National University | Lim S.K.,World Institute of Kimchi | Park J.-I.,Korea Basic Science Institute | And 6 more authors.
Diabetes | Year: 2015

Arginine methylation is responsible for diverse biological functions and is mediated by protein arginine methyltransferases (PRMTs). Nonalcoholic fatty liver disease (NAFLD) is accompanied by excessive hepatic lipogenesis via liver X receptor α (LXRα). Thus we examined the pathophysiological role of PRMTs in NAFLD and their relationship with LXRα. In this study, palmitic acid (PA) treatment increased PRMT3, which is correlated with the elevation of hepatic lipogenic proteins. The expression of lipogenic proteins was increased by PRMT3 overexpression, but decreased by PRMT3 silencing and use of the PRMT3 knockout (KO) mouse embryonic fibroblast cell line. PRMT3 also increased the transcriptional activity of LXRα by directly binding with LXRα in a methylation-independent manner. In addition, PA treatment translocated PRMT3 to the nucleus. In animal models, a high-fat diet increased the LXRα and PRMT3 expressions and binding, which was not observed in LXRα KO mice. Furthermore, increased PRMT3 expression and its binding with LXRα were observed in NAFLD patients. Taken together, LXRα and PRMT3 expression was increased in cellular and mouse models of NAFLD and human patients, and PRMT3 translocated into the nucleus bound with LXRα as a transcriptional cofactor, which induced lipogenesis. In conclusion, PRMT3 translocation by PA is coupled to the binding of LXRα, which is responsible for the onset of fatty liver. © 2015 by the American Diabetes Association. Source

Discover hidden collaborations