Time filter

Source Type

Yanggu, South Korea

Kuchinskaya E.,Linkoping University | Grigelioniene G.,Karolinska Institutet | Grigelioniene G.,Karolinska University Hospital | Hammarsjo A.,Karolinska Institutet | And 7 more authors.
Orphanet Journal of Rare Diseases | Year: 2016

Ischiospinal dysostosis (ISD) is a polytopic dysostosis characterized by ischial hypoplasia, multiple segmental anomalies of the cervicothoracic spine, hypoplasia of the lumbrosacral spine and occasionally associated with nephroblastomatosis. ISD is similar to, but milder than the lethal/semilethal condition termed diaphanospondylodysostosis (DSD), which is associated with homozygous or compound heterozygous mutations of bone morphogenetic protein-binding endothelial regulator protein (BMPER) gene. Here we report for the first time biallelic BMPER mutations in two patients with ISD, neither of whom had renal abnormalities. Our data supports and further extends the phenotypic variability of BMPER-related skeletal disorders. © 2015 Kuchinskaya et al.

Wang W.,Osaka University | Song M.H.,Jeju National University | Miura K.,Osaka University | Fujiwara M.,Osaka University | And 9 more authors.
American Journal of Medical Genetics, Part A | Year: 2016

The C-type natriuretic peptide (CNP)-natriuretic peptide receptor 2 (NPR2) signaling pathway plays an important role in chondrocyte development. Homozygous loss-of-function mutations of the NPR2 gene cause acromesomelic dysplasia, type Maroteaux (AMDM). The aim of this study was to identify and characterize NPR2 loss-of-function mutations in patients with AMDM. The NPR2 gene was sequenced in three Korean patients with AMDM and functional analysis of the mutated proteins was performed in vitro. Five novel NPR2 mutations were found in the three patients: two compound heterozygous mutations [c.1231T>C (Tyr411His) and c.2761C>T (Arg921X) in Patient 1 and c.1663A>T (Lys555X) and c.1711-1G>C (M571VfsX12) in Patient 3] and a homozygous mutation [c.2762G>A (Arg921Gln) in Patient 2]. Serum NT-proCNP concentration was significantly increased in each patient compared to control subjects. Cells transfected with the expression vector of each mutant except those found in Patient 3 showed a negligible or a markedly low cGMP response after treatment with CNP. HA-tagged wild-type (wt) and HA-mutant NPR2 were expressed at comparable levels: there were two bands of ∼130 and ∼120kDa in wt and Arg921Gln, a single ∼120kDa band in Tyr411His, and a single ∼110kDa in the nonsense mutant. With respect to subcellular localization, Arg921Gln as well as wt-NPR2 reached the cell surface, whereas Tyr411His and Arg921X mutants did not. The Tyr411His and Arg921X NPR2 proteins were co-localized with an endoplasmic reticulum (ER) marker and failed to traffic from the ER to the Golgi apparatus. These results are consistent with deglycosylation experiments. Tyr411His and Arg921X NPR2 are complete loss-of-function mutations, whereas Arg921Gln behaves as a receptor for CNP with limited function. © 2015 Wiley Periodicals, Inc.

Cho S.Y.,Sungkyunkwan University | Bae J.-S.,Sungkyunkwan University | Kim N.K.D.,Sungkyunkwan University | Forzano F.,Galliera Hospital | And 16 more authors.
American Journal of Human Genetics | Year: 2016

Spondyloepimetaphyseal dysplasias (SEMDs) comprise a heterogeneous group of autosomal-dominant and autosomal-recessive disorders. An apparent X-linked recessive (XLR) form of SEMD in a single Italian family was previously reported. We have been able to restudy this family together with a second family from Korea by segregating a severe SEMD in an X-linked pattern. Exome sequencing showed missense mutations in BGN c.439A>G (p.Lys147Glu) in the Korean family and c.776G>T (p.Gly259Val) in the Italian family; the c.439A>G (p.Lys147Glu) mutation was also identified in a further simplex SEMD case from India. Biglycan is an extracellular matrix proteoglycan that can bind transforming growth factor beta (TGF-β) and thus regulate its free concentration. In 3-dimensional simulation, both altered residues localized to the concave arc of leucine-rich repeat domains of biglycan that interact with TGF-β. The observation of recurrent BGN mutations in XLR SEMD individuals from different ethnic backgrounds allows us to define "XLR SEMD, BGN type" as a nosologic entity. © 2016 American Society of Human Genetics.

Singh A.,Banaras Hindu University | Kim O.-H.,Woorisoa Childrens Hospital | Iida A.,RIKEN | Park W.-Y.,Samsung | And 2 more authors.
European Journal of Medical Genetics | Year: 2015

Desbuquois dysplasia (DBQD) is a rare skeletal dysplasia characterized by severe short stature, laxity, dislocation of multiple joints and developmental delay. DBQD is clinically heterogeneous. Distinct radiographic hand abnormalities such as the presence of extra-ossification distal to the second metacarpal or normal hand has led to its classification into types 1 and 2. Furthermore, the third type of DBQD, Kim type has been reported which is characterized by short metacarpals and elongated phalanges. However, DBQD Kim type has been exclusively reported in Japanese and Korean and its clinical characteristics remain to be delineated. Mutations in the calcium-activated nucleotidase 1 (. CANT1) gene have been reported in all three types of DBQD. Previously reported patients with DBQD Kim type had a common mutation c.676G>A (p.Val226Met), which had a common founder between Japanese and Korean. Here, we report 3 Indian patients with DBQD, Kim type from 2 families which were unrelated to each other. We identified a novel mutation of CANT1, c.467C>T (p.Ser156Phe), in all the patients in the homozygous form. Our results show that DBQD Kim type is not exclusive to East Asians and also report a novel mutation from the Indian subcontinent. © 2014 Elsevier Masson SAS.

Jang M.-A.,Sungkyunkwan University | Kim E.K.,Sungkyunkwan University | Now H.,Pohang University of Science and Technology | Nguyen N.T.H.,Pohang University of Science and Technology | And 23 more authors.
American Journal of Human Genetics | Year: 2015

Singleton-Merten syndrome (SMS) is an autosomal-dominant multi-system disorder characterized by dental dysplasia, aortic calcification, skeletal abnormalities, glaucoma, psoriasis, and other conditions. Despite an apparent autosomal-dominant pattern of inheritance, the genetic background of SMS and information about its phenotypic heterogeneity remain unknown. Recently, we found a family affected by glaucoma, aortic calcification, and skeletal abnormalities. Unlike subjects with classic SMS, affected individuals showed normal dentition, suggesting atypical SMS. To identify genetic causes of the disease, we performed exome sequencing in this family and identified a variant (c.1118A>C [p.Glu373Ala]) of DDX58, whose protein product is also known as RIG-I. Further analysis of DDX58 in 100 individuals with congenital glaucoma identified another variant (c.803G>T [p.Cys268Phe]) in a family who harbored neither dental anomalies nor aortic calcification but who suffered from glaucoma and skeletal abnormalities. Cys268 and Glu373 residues of DDX58 belong to ATP-binding motifs I and II, respectively, and these residues are predicted to be located closer to the ADP and RNA molecules than other nonpathogenic missense variants by protein structure analysis. Functional assays revealed that DDX58 alterations confer constitutive activation and thus lead to increased interferon (IFN) activity and IFN-stimulated gene expression. In addition, when we transduced primary human trabecular meshwork cells with c.803G>T (p.Cys268Phe) and c.1118A>C (p.Glu373Ala) mutants, cytopathic effects and a significant decrease in cell number were observed. Taken together, our results demonstrate that DDX58 mutations cause atypical SMS manifesting with variable expression of glaucoma, aortic calcification, and skeletal abnormalities without dental anomalies. © 2015 The American Society of Human Genetics.

Discover hidden collaborations