Time filter

Source Type

Gumi, South Korea

Lee J.,Seoul National University | Chae H.-R.,Seoul National University | Won Y.J.,Seoul National University | Lee K.,Seoul National University | And 5 more authors.
Journal of Membrane Science | Year: 2013

As a potential remedy for the water shortage, membrane bioreactor (MBR) has emerged and attracted much attention in the field of wastewater treatment and reuse. However, MBRs have membrane fouling which is the major obstacle in maximizing their efficiency leading to short membrane lifetime and high operating costs. Here we demonstrate that the nanoplatelets of graphene oxide included in the preparation of membrane suppress the fouling to such an extent that a fivefold lengthening is achieved of the time between chemical cleanings. It was quite a surprise to discover that inclusion of only about 1. wt% of graphene oxide in the fabrication of membrane could spring up a new generation of membrane with anti-fouling capability for MBRs. Utilization of graphene oxide introduced here for wastewater treatment would open and facilitate graphene-based environmental applications. © 2013 Elsevier B.V. Source

The present invention relates to a tubular molded body capable of full-wrapping a membrane module, and an industrial filter assembly using the same. The tubular molded body of the present invention is a molded body consisting of a transparent plastic material and having a constant outer diameter that protects the membrane module through a simple manipulation using a physical fastening means to minimize the space for water stagnation, and prevents the accumulation of Mg

Woongjin Chemical Co. | Date: 2012-02-07

A reflective polarizer of the invention has excellent optical properties even though a very small number of polymer components per unit area is disposed inside a matrix thereof compared to reflective polarizers of the related art, which include birefringent polymer, since the polymer inside the matrix has a plate-like shape. This is advantageous for covering the entire range of visible light, since a plate-like polymer having a variety of optical thicknesses can be used. The additional processing of bonding the skin layer is not performed, since the skin layer is formed on at least one surface of the core layer in the state in which it is molten. This can greatly reduce manufacturing costs, and is advantageous in that it maximizes optical properties in a limited thickness.

Woongjin Chemical Co. | Date: 2011-12-19

A selective membrane having a high fouling resistance. In one embodiment, the selective membrane is a composite polyamide reverse osmosis membrane having a hydrophilic coating made by covalently bonding a hydrophilic compound to the polyamide membrane, the hydrophilic compound including (i) a reactive group that is adapted to covalently bond directly to the polyamide membrane, the reactive group being at least one of a primary amine and a secondary amine; (ii) a non-terminal hydroxyl group; and (iii) an amide group. In another embodiment, the hydrophilic compound includes (i) a reactive group adapted to covalently bond directly to the polyamide membrane, the reactive group being at least one of a primary amine and a secondary amine; (ii) a hydroxyl group; and (iii) an amide group, the amide group being linked directly to the hydroxyl group by one of an alkyl group and an alkenyl group.

A forward osmosis membrane for seawater desalination and a method for preparing the same. The forward osmosis membrane has a composite membrane structure including a nonwoven fabric layer, a hydrophilic polymer layer, and a polyamide layer. The hydrophilic polymer layer formed on the nonwoven fabric layer facilitates an inflow of water from the feed water to the draw solution to enhance flux and realize high water permeability in the direction of osmosis. The polyamide layer not only secures contamination resistance and chemical resistance but also minimizes the back diffusion of salts of the draw solution in the direction of reverse osmosis. Hence, the forward osmosis membrane of the present invention is greatly useful for desalination of high-concentration seawater.

Discover hidden collaborations