Oxford, United Kingdom
Oxford, United Kingdom
SEARCH FILTERS
Time filter
Source Type

Patent
Wireless Excellence | Date: 2015-06-09

Precoding for multiple transmission streams in multiple antenna systems. Disclosed herein is a general method that transmits signal from multiple antennas using a one/two dimensional precoder. This precoder is fixed in a given resource block (RB) or slot, which is composed of P subcarriers and Q OFDM symbols (where the values for P and Q are greater than or equal to 1). The precoder in each resource block may take same or different values, which span the two dimensional time-frequency grid. The precoder is chosen as a function of either logical frequency index or physical frequency index of the RB.


Patent
Wireless Excellence and Indian Institute of Technology Madras | Date: 2016-04-06

Embodiments herein disclose a method of enabling non-ICBM transmissions in the communication network. The method includes transmitting information of the number of receiver antennas at user equipments (UEs) intended to be scheduled by a transmitter in common resource elements, to a controller in the communication network. Further, the method includes receiving a number of non-Interference Cancelling Block Modulation (ICBM) transmissions from the controller. Furthermore, the method includes transmitting information indicating cell-identification numbers of participating transmitters, and corresponding index of ICBM precoder matrix of the participating transmitters to the UEs.


Patent
Wireless Excellence and Indian Institute of Technology Madras | Date: 2016-07-15

The embodiments herein provide a method for In Band Full Duplex (IBFD) communication in a radio network including at least one IBFD node, at least one first non-IBFD User Equipment (UE) and at least one second non-IBFD UE. The method includes transmitting by the at least one IBFD node a first signal to the at least one first non-IBFD UE over a forward channel, and receiving by the at least one IBFD node a second signal from the at least one second non-IBFD UE over the same forward channel simultaneously, where the second signal includes at least one of a pilot signal, Channel State Information (CSI), and control information, where the forward channel is orthogonal to a reverse channel in at least one of time, frequency, space, and code.


The embodiments herein provide a method and system to trigger UE handover in a radio communication network including a serving base station and a plurality of candidate base stations. The serving base station shares uplink transmission information associated with the UE with the candidate base stations. A candidate base station detects the presence of the UE located in radio coverage of the candidate base station by obtaining information from the uplink transmission of the UE. Further, the candidate base station computes a second parameter and sends to the serving base station. The serving base station determines to trigger handover procedure when the second parameter meets handover criteria. Further, the serving base station sends handover command to the UE after determining that the second parameter meets handover criteria.


Patent
Wireless Excellence and Indian Institute of Technology Madras | Date: 2016-05-11

Embodiments herein provide a Multiple-Input Multiple-Output (MIMO) method for a communication system in general, and more particularly to an Orthogonal Frequency Division Multiplexing (OFDM) based communication system to serve more than one receivers on the same resources. The method includes selecting, by a transmitter, a plurality of precoder matrices for a plurality of receivers from a predefined codebook of precoders, where the plurality of precoder matrices is dynamically cycled within an allocated resource. Further, the method includes transmitting, by the transmitter, a symbol vector precoded with the plurality of precoder matrices over MIMO channel associated with the plurality of receivers.


Patent
Wireless Excellence | Date: 2015-04-30

The embodiments herein disclose an indoor personal relay which has a wireless interface with the BS, which is effective in both cost and technology terms. The indoor personal relay, as disclosed herein is an estimate and forward relay. The relay 101 as disclosed herein does not perform any additional channel decoding/encoding on the data that it receives from the UE or BS. Embodiments disclosed herein enable the relevant UEs to have a high SINR link with the relay. This, in turn, translates to a better effective link quality between the UE and BS and higher indoor rates, which otherwise may have been not as good as a consequence of poor direct link between the UE and the BS. This relay is effectively transparent to the UE. The deployment of relays also implies minimal impact on UE IOT.


Embodiments disclosed herein reduce interference at pilot symbols and also enable good interference measurements by using a combination pilot tones and null tones along with null tones. In this type of system, the receivers estimate the channel state information without any strong interference from the neighboring transmitters, and at the same time it can also measure either the individual interference channel states or the interference covariances from the silent periods. It uses these measurements thus obtained to calculate the post processing SINR, and then compute and report the wideband and subband CQIs to the transmitter. The groups of transmitters are reused in geographically separated region using a frequency reuse structure. In a preferred implementation, pilot signal is precoded using a multi-antenna precoder. The precoder may be same for pilot and data.


Patent
Wireless Excellence and Indian Institute of Technology Madras | Date: 2016-07-07

Embodiments herein provide a method for beam steering in a Multiple Input Multiple Output (MIMO) system. The method includes steering a transmit beam using a precoder matrix determined based on a plurality of parameters, wherein the transmit beam is formed using at least one of a weight of each antenna element, a number of antenna elements, and an inter-antenna element spacing.


Patent
Wireless Excellence | Date: 2015-02-09

The embodiments described herein provide a method and system for improve link adaption performance in wireless networks. The method for modifying the MCS index for transmission using a computed offset is provided. The offset is calculated based on HARQ feedback of transmissions. A transition probability matrix with plurality of MCS indices is used for selecting the MCS index for transmission based on the highest probability of transition. A pattern sequence of MCS indices is formed and the presence of the pattern is determined in the history of the HARQ transmissions. The frequency of the pattern presence is also determined and the MCS index is selected for the HARQ transmissions. A frequency database of MCS indices is built using source encoding techniques. The transition probabilities that are estimated from the frequency database along with a cost function associated with each MCS index will be used to compute next MCS index.


Cognitive interference management in Cellular wireless network with relays and micro/pico/femto cells operated in distributed scheduling mode. A cellular system may use RS to improve capacity or for coverage extension. ARS relays the signals between BS 104 and MS by using wireless links between BS-RS and RS-MS during both downlink and uplink transmissions. Embodiments herein disclose a mechanism to explicitly indicate to the MS whether the MAC management messages sent by the BS to the MS are to inform it to perform scanning for interference measurement. Also, disclosed herein is a mechanism to explicitly indicate to the BS whether the message sent by the MS is related to interference measurement.

Loading Wireless Excellence collaborators
Loading Wireless Excellence collaborators