Time filter

Source Type

Patent
WIN Semiconductors Corporation | Date: 2016-03-15

A protective cover for an acoustic wave device and a fabrication method thereof, for protecting an acoustic wave device having a resonant area during a packaging operation so as to avoid molding compound flowing onto the resonant area of the acoustic wave device. The fabrication method comprises: defining a sacrificial area on the acoustic wave device; forming a sacrificial layer on the sacrificial area; covering a metal covering layer on the sacrificial layer and connecting a bottom rim of the metal covering layer to the acoustic wave device and forming an opening between the bottom rim of the metal covering layer and the acoustic wave device; and removing the sacrificial layer to form a cavity between the metal covering layer and the resonant area by using a chemical solution, wherein the chemical solution enters from the opening between the metal covering layer and the acoustic wave device.


Patent
WIN Semiconductors Corporation | Date: 2016-12-06

The present invention relates to a compound semiconductor integrated circuit chip having a front and/or back surface metal layer used for electrical connection to an external circuit. The compound semiconductor integrated circuit chip (first chip) comprises a substrate, an electronic device layer, and a dielectric layer. A first metal layer is formed on the front side of the dielectric layer, and a third metal layer is formed on the back side of the substrate. The first and third metal layer are made essentially of Cu and used for the connection to other electronic circuits. A second chip may be mounted on the first chip with electrical connection made with the first or the third metal layer that extends over the electronic device in the first chip in the three-dimensional manner to make the electrical connection between the two chips having connection nodes away from each other.


An integrated structure of power amplifier and acoustic wave device comprises: a compound semiconductor epitaxial substrate, a power amplifier upper structure formed on a first side of said compound semiconductor epitaxial substrate, and a film bulk acoustic resonator formed on a second side of said compound semiconductor epitaxial substrate; wherein forming an epitaxial structure on a compound semiconductor substrate to form said compound semiconductor epitaxial substrate; wherein said first side of said compound semiconductor epitaxial substrate and said power amplifier upper structure form a power amplifier; said second side of said compound semiconductor epitaxial substrate and said film bulk acoustic resonator form an acoustic wave device; the integrated structure of power amplifier and acoustic wave device on the same compound semiconductor epitaxial substrate is capable of reducing the component size, optimizing the impedance matching, and reducing the signal loss between power amplifier and acoustic wave device.


Patent
WIN Semiconductors Corporation | Date: 2016-03-10

A layout method for compound semiconductor integrated circuits, comprising following steps of: forming a first metal layer within a first circuit layout area which intersects with a second circuit layout area at an intersection area on a compound semiconductor substrate; defining an adjacent crossover area including said intersection area and a peripheral adjacent area thereof; a first dielectric area located within said adjacent crossover area and intersected with at least part of said intersection area; forming a first dielectric block within said first dielectric area or forming said first dielectric block within said first dielectric area and a second dielectric block outside said first dielectric area, the thickness of said second dielectric block is no greater than and the thickness of at least part of said second dielectric block is smaller than the thickness of said first dielectric block; forming a second metal layer within said second circuit layout area.


Patent
WIN Semiconductors Corporation | Date: 2015-05-27

A compound semiconductor integrated circuit with three-dimensionally formed components, such as three-dimensionally formed bond pads or inductors, positioned above an electronic device. The dielectric layer inserted between the electronic device and the bond pads or inductors thereon has a thickness between 10 to 30 microns, so that it can effectively mitigate the effect of the structure on the device performance. A SiN protection layer can be disposed to cover the electronic devices to prevent contamination from the bond pad or inductor material to the electronic device, and therefore the lower cost copper can be used as the bond pad and inductor material. The three-dimensional bond pad can be used in wire bonding or bump bonding technology.


Patent
WIN Semiconductors Corporation | Date: 2015-10-14

A stacked structure comprises a semiconductor chip which includes a substrate having at least one substrate via hole penetrating through the substrate; at least one backside metal layer formed on a backside of the substrate covering an inner surface of the substrate via hole and at least part of the backside of the substrate; at least one front-side metal layer formed on the front-side of the substrate and electrically connected to the at least one backside metal layer on a top of at least one of the at least one substrate via hole; at least one electronic device formed on the front-side of the substrate and electrically connected to the at least one front-side metal layer; and at least one metal bump formed on at least one of the backside metal layer and the front-side metal layer.


Patent
WIN Semiconductors Corporation | Date: 2015-09-22

A biasing circuitry is disclosed. The biasing circuitry includes a biasing module, electrically connected to a power amplifier; and a control series, having an end electrically connected to a positive voltage, and another end electrically connected to the biasing module. The control series includes a switch unit, controlled by a control voltage to be on or off; and a voltage-drop unit, connected to the switch unit in series. The voltage-drop unit is configured to adjust a bias point of the power amplifier.


Patent
WIN SEMICONDUCTORS Corporation | Date: 2016-04-29

A layout structure of HBTs comprising one or more HBTs, each of which comprises a base electrode, an emitter electrode, and a collector electrode. A passive layer, a first dielectric layer, a collector redistribution layers, one or more emitter copper pillars, and one or more collector copper pillars are formed above the one or more HBTs. The passive layer comprises a collector and an emitter pads. The first dielectric layer has one or more emitter and collector via holes. The emitter copper pillar is disposed on the emitter via hole and forms an electrical connection to the emitter electrode. The collector copper pillar is disposed on the collector redistribution layer and forms electrical connection to the collector electrode. The layout design of the emitter and collector copper pillars is therefore flexible, and the heat dissipation efficiency is improved.


An improved structure of backside copper metallization for semiconductor devices and a fabrication method thereof, wherein the improved structure comprises sequentially from top to bottom an active layer, a substrate, a backside metal seed layer, a high-temperature sustaining buffer layer, a backside metal layer and at least one oxidation resistant layer, wherein the backside metal seed layer contains Pd and P, the high-temperature sustaining buffer layer is made of Ni, Ag or Ni alloys, and the backside metal layer is made of Cu. The semiconductor chip using the structure provided by the present invention can sustain high-temperature operations.


Patent
WIN Semiconductors Corporation | Date: 2015-04-21

A heterojunction bipolar transistor, comprising an elongated base mesa, an elongated base electrode, two elongated emitters, an elongated collector, and two elongated collector electrodes. The elongated base electrode is formed on the base mesa along the long axis of the base mesa, and the base electrode has a base via hole at or near the center of the base electrode. The two elongated emitter are formed on the base mesa respectively at two opposite sides of the base electrode, and each of two emitters has an elongated emitter electrode formed on the emitter. The elongated collector is formed below the base mesa. The two elongated collector electrodes are formed on the collector respectively at two opposite sides of the base mesa.

Loading WIN Semiconductors Corporation collaborators
Loading WIN Semiconductors Corporation collaborators