Entity

Time filter

Source Type


Helbig I.,University of Kiel | Swinkels M.E.M.,University Utrecht | Swinkels M.E.M.,SEin Epilepsy Institute in the Netherlands Foundation | Aten E.,Leiden University | And 22 more authors.
European Journal of Human Genetics | Year: 2014

A genetic contribution to a broad range of epilepsies has been postulated, and particularly copy number variations (CNVs) have emerged as significant genetic risk factors. However, the role of CNVs in patients with epilepsies with complex phenotypes is not known. Therefore, we investigated the role of CNVs in patients with unclassified epilepsies and complex phenotypes. A total of 222 patients from three European countries, including patients with structural lesions on magnetic resonance imaging (MRI), dysmorphic features, and multiple congenital anomalies, were clinically evaluated and screened for CNVs. MRI findings including acquired or developmental lesions and patient characteristics were subdivided and analyzed in subgroups. MRI data were available for 88.3% of patients, of whom 41.6% had abnormal MRI findings. Eighty-eight rare CNVs were discovered in 71 out of 222 patients (31.9%). Segregation of all identified variants could be assessed in 42 patients, 11 of which were de novo. The frequency of all structural variants and de novo variants was not statistically different between patients with or without MRI abnormalities or MRI subcategories. Patients with dysmorphic features were more likely to carry a rare CNV. Genome-wide screening methods for rare CNVs may provide clues for the genetic etiology in patients with a broader range of epilepsies than previously anticipated, including in patients with various brain anomalies detectable by MRI. Performing genome-wide screens for rare CNVs can be a valuable contribution to the routine diagnostic workup in patients with a broad range of childhood epilepsies. © 2014 Macmillan Publishers Limited All rights reserved. Source


Ha A.D.,Movement Disorders Unit | Parratt K.L.,Movement Disorders Unit | Rendtorff N.D.,Wilhelm Johannsen Center for Functional Genome Research | Lodahl M.,Wilhelm Johannsen Center for Functional Genome Research | And 9 more authors.
Movement Disorders | Year: 2012

Mohr-Tranebjaerg syndrome (MTS) is an X-linked recessive disorder characterized by deafness and dystonia. However the phenotypic expression of dystonia has not been systematically defined. We report clinical, neurophysiological, and ophthalmological data on 6 subjects from 3 Australian kindreds, including 2 with novel mutations, together with a systematic review of the literature, in order to define the phenotypic expression of dystonia. Profound hearing impairment in affected males develops by infancy and precedes the development of dystonia, which varies in time of onset from the first to the sixth decades, with a peak in the second and third decades. Dystonia in MTS tends to be focal, segmental, or multifocal in distribution at onset, with a predilection for the upper body, variably involving the head, neck, and upper limbs. The majority of patients have progression or generalization of their dystonia regardless of age of onset. Within our 3 kindreds, we observed relative intrafamilial homogeneity but interfamilial variation. The median time to the development of moderate-severely disabling dystonia in these subjects was 11 years. Associated features included progressive cognitive decline, pyramidal signs, and in 1 patient, gait freezing and postural instability. Optic atrophy and cortical visual impairment were both observed. We report for the first time a female patient who developed multiple disabling neurological complications of MTS. Our findings more clearly define and expand the phenotype of both the dystonia and other neurological features of MTS and have implications for the diagnosis and management of this condition. © 2012 Movement Disorder Society. Source


Rasmussen M.B.,Wilhelm Johannsen Center for Functional Genome Research | Nielsen J.V.,University of Southern Denmark | Lourenc o C.M.,University Of Sa&Tild | Melo J.B.,University of Coimbra | And 14 more authors.
Journal of Medical Genetics | Year: 2014

Background: Recently, a number of patients have been described with structural rearrangements at 3q13.31, delineating a novel microdeletion syndrome with common clinical features including developmental delay and other neurodevelopmental disorders (NDD). A smallest region of overlapping deletions (SRO) involved five RefSeq genes, including the transcription factor gene ZBTB20 and the dopamine receptor gene DRD3, considered as candidate genes for the syndrome. Methods and results: We used array comparative genomic hybridization and next-generation mate-pair sequencing to identify key structural rearrangements involving ZBTB20 in two patients with NDD. In a patient with developmental delay, attention-deficit hyperactivity disorder, psychosis, Tourette's syndrome and autistic traits, a de novo balanced t(3;18) translocation truncated ZBTB20. The other breakpoint did not disrupt any gene. In a second patient with developmental delay and autism, we detected the first microdeletion at 3q13.31, which truncated ZBTB20 but did not involve DRD3 or the other genes within the previously defined SRO. Zbtb20 directly represses 346 genes in the developing murine brain. Of the 342 human orthologous ZBTB20 candidate target genes, we found 68 associated with NDD. Using chromatin immunoprecipitation and quantitative PCR, we validated the in vivo binding of Zbtb20 in evolutionary conserved regions in six of these genes (Cntn4, Gad1, Nrxn1, Nrxn3, Scn2a, Snap25). Conclusions: Our study links dosage imbalance of ZBTB20 to a range of neurodevelopmental, cognitive and psychiatric disorders, likely mediated by dysregulation of multiple ZBTB20 target genes, and provides new knowledge on the genetic background of the NDD seen in the 3q13.31 microdeletion syndrome. Source

Discover hidden collaborations