Lansing, MI, United States
Lansing, MI, United States

Time filter

Source Type

Kardos M.,University of Montana | Kardos M.,Uppsala University | Luikart G.,University of Montana | Bunch R.,CSIRO | And 7 more authors.
Molecular Ecology | Year: 2015

The identification of genes influencing fitness is central to our understanding of the genetic basis of adaptation and how it shapes phenotypic variation in wild populations. Here, we used whole-genome resequencing of wild Rocky Mountain bighorn sheep (Ovis canadensis) to >50-fold coverage to identify 2.8 million single nucleotide polymorphisms (SNPs) and genomic regions bearing signatures of directional selection (i.e. selective sweeps). A comparison of SNP diversity between the X chromosome and the autosomes indicated that bighorn males had a dramatically reduced long-term effective population size compared to females. This probably reflects a long history of intense sexual selection mediated by male-male competition for mates. Selective sweep scans based on heterozygosity and nucleotide diversity revealed evidence for a selective sweep shared across multiple populations at RXFP2, a gene that strongly affects horn size in domestic ungulates. The massive horns carried by bighorn rams appear to have evolved in part via strong positive selection at RXFP2. We identified evidence for selection within individual populations at genes affecting early body growth and cellular response to hypoxia; however, these must be interpreted more cautiously as genetic drift is strong within local populations and may have caused false positives. These results represent a rare example of strong genomic signatures of selection identified at genes with known function in wild populations of a nonmodel species. Our results also showcase the value of reference genome assemblies from agricultural or model species for studies of the genomic basis of adaptation in closely related wild taxa. © 2015 John Wiley & Sons Ltd.


PubMed | University of Montana, Wildlife Disease Laboratory, Grand Teton National Park, Montana Conservation Science Institute and CSIRO
Type: Journal Article | Journal: Molecular ecology | Year: 2016

The identification of genes influencing fitness is central to our understanding of the genetic basis of adaptation and how it shapes phenotypic variation in wild populations. Here, we used whole-genome resequencing of wild Rocky Mountain bighorn sheep (Ovis canadensis) to >50-fold coverage to identify 2.8 million single nucleotide polymorphisms (SNPs) and genomic regions bearing signatures of directional selection (i.e. selective sweeps). A comparison of SNP diversity between the X chromosome and the autosomes indicated that bighorn males had a dramatically reduced long-term effective population size compared to females. This probably reflects a long history of intense sexual selection mediated by male-male competition for mates. Selective sweep scans based on heterozygosity and nucleotide diversity revealed evidence for a selective sweep shared across multiple populations at RXFP2, a gene that strongly affects horn size in domestic ungulates. The massive horns carried by bighorn rams appear to have evolved in part via strong positive selection at RXFP2. We identified evidence for selection within individual populations at genes affecting early body growth and cellular response to hypoxia; however, these must be interpreted more cautiously as genetic drift is strong within local populations and may have caused false positives. These results represent a rare example of strong genomic signatures of selection identified at genes with known function in wild populations of a nonmodel species. Our results also showcase the value of reference genome assemblies from agricultural or model species for studies of the genomic basis of adaptation in closely related wild taxa.


Rutkiewicz J.,University of Michigan | Nam D.-H.,University of Michigan | Cooley T.,Wildlife Disease Laboratory | Neumann K.,Saving Our Avian Resources | And 4 more authors.
Ecotoxicology | Year: 2011

In this study, we assessed mercury (Hg) exposure in several tissues (brain, liver, and breast and primary feathers) in bald eagles (Haliaeetus leucocephalus) collected from across five Great Lakes states (Iowa, Michigan, Minnesota, Ohio, and Wisconsin) between 2002-2010, and assessed relationships between brain Hg and neurochemical receptors (NMDA and GABA A) and enzymes (glutamine synthetase (GS) and glutamic acid decarboxylase (GAD)). Brain total Hg (THg) levels (dry weight basis) averaged 2.80 μg/g (range: 0.2-34.01), and levels were highest in Michigan birds. THg levels in liver (r p = 0.805) and breast feathers (r p = 0.611) significantly correlated with those in brain. Brain Hg was not associated with binding to the GABA A receptor. Brain THg and inorganic Hg (IHg) were significantly positively correlated with GS activity (THg r p = 0.190; IHg r p = 0.188) and negatively correlated with NMDA receptor levels (THg r p = -0245; IHg r p = -0.282), and IHg was negatively correlated with GAD activity (r s = -0.196). We also report upon Hg demethylation and relationships between Hg and Se in brain and liver. These results suggest that bald eagles in the Great Lakes region are exposed to Hg at levels capable of causing subclinical neurological damage, and that when tissue burdens are related to proposed avian thresholds approximately 14-27% of eagles studied here may be at risk. © 2011 Springer Science+Business Media, LLC.


Ramsey D.S.L.,Arthur Rylah Institute for Environmental Research | O'Brien D.J.,Wildlife Disease Laboratory | Cosgrove M.K.,Wildlife Disease Laboratory | Rudolph B.A.,Rose Lake Wildlife Research Center | And 2 more authors.
Journal of Wildlife Management | Year: 2014

Bovine tuberculosis (bTB) caused by Mycobacterium bovis infection in Michigan white-tailed deer (Odocoileus virginianus) has proven resistant to current management practices. The Michigan Department of Natural Resources (MDNR) is faced with managing a protracted bTB outbreak with shrinking economic resources, its initial control strategies approaching, or having reached, the limits of their effectiveness. Planning tools are needed to project the outbreak's future course and forecast the likely outcomes of proposed controls. We describe development of a spatially explicit, individual-based stochastic simulation model of bTB in Michigan white-tailed deer. We sought to 1) characterize whether eradication of bTB is possible by increasing hunter harvest or via vaccination, and how long it is likely to take to achieve eradication; 2) characterize the effect of concurrent deer baiting; and 3) assess the effect of baiting on the probability of bTB establishment in uninfected areas. Simulations indicated that current MDNR management strategies are unlikely to eradicate bTB from the core outbreak area's deer population within the next 30 years. A 50-100% increase (over current rates) of both antlered and antlerless deer harvest was required to achieve eradication if baiting was occurring, compared to only a 50% increase in harvest required if baiting was eliminated. Vaccination strategies required frequent application and high exposure rates (>90%) to achieve eradication, which baiting delayed. Simulations indicated that if bTB was eradicated from the core outbreak area, a single infected deer introduced into the area would be 8 times more likely to re-establish bTB if baiting was occurring. The ability to forecast likely outcomes of disease management can be critical for wildlife managers to assess whether specific strategies are likely to be successful. Because current policy appears unlikely to achieve the stated goal of eradicating bTB from Michigan in the foreseeable future, reorienting the bTB program from eradication to controlling geographic spread and transmission to cattle may be more realistic goals. Spatial models such as ours are ideally suited to investigating spatial heterogeneity of disease transmission, and how transmission is influenced by aggregating factors such as baiting or supplemental feeding. © 2014 The Wildlife Society.


PubMed | Arthur Rylah Institute for Environmental Research, Rose Lake Wildlife Research Center, Constitution Hall and Wildlife Disease Laboratory
Type: | Journal: Preventive veterinary medicine | Year: 2016

The eradication of bovine tuberculosis (bTB), caused by Mycobacterium bovis, from cattle in many locations worldwide is complicated by endemic foci of the disease in free-ranging wildlife. Recent simulation modeling of the bTB outbreak in white-tailed deer (WTD) in Michigan, USA, suggests current management is unlikely to eradicate bTB from the core outbreak area (DMU 452) within the next three decades. However, some level of control short of eradication might sufficiently reduce transmission from deer to cattle to a point at which the negative effects of bTB on the cattle industry could be reduced or eliminated, while minimizing the negative consequences of reducing deer numbers. We extended our existing spatially-explicit, individual-based stochastic simulation model of bTB transmission in WTD to incorporate transmission to cattle, to characterize the effects of vaccination and increased harvest of WTD on cattle herd breakdown rates, to examine the effects of localized culling or vaccination of WTD in the vicinity of cattle farms, to assess the effects of concurrent deer baiting, and to determine the effect of progressive restriction of deer/cattle contact on herd breakdowns. A spatially-explicit cattle layer was constructed describing the spatial locations, farm size and cattle density of all farms within and directly adjacent to DMU452. Increased hunter harvest or vaccination of deer, or a combination, would likely decrease the number of cattle herd breakdowns to <1 per year in less than 15 years. Concurrent deer baiting variably increased the time necessary to achieve zero breakdowns. The prevalence of bTB in deer needed to fall below 0.5% before 1 herd breakdown per year could be expected, and below 0.1% before zero breakdowns were likely. Locally applied post-harvest deer culling or vaccination also rapidly reduced herd breakdowns. On farm biosecurity measures needed to reduce deer to cattle contact by >95% in order to reliably reduce herd breakdowns, and did not achieve zero breakdowns in the absence of other deer controls.


Vernati G.,University of Wyoming | Edwards W.H.,Wildlife Disease Laboratory | Rocke T.E.,U.S. Geological Survey | Little S.F.,U.S. Army | Andrews G.P.,University of Wyoming
Journal of Wildlife Diseases | Year: 2011

Although Yersinia pestis is classified as a ''high-virulence'' pathogen, some host species are variably susceptible to disease. Coyotes (Canatrans) exhibit mild, if any, symptoms during infection, but antibody production occurs postinfection. This immune response has been reported to be against the F1 capsule, although little subsequent characterization has been conducted. To further define the nature of coyote humoral immunity to plague, qualitative serology was conducted to assess the antiplague antibody repertoire. Humoral responses to six plasmidencoded Y. pestis virulence factors were first examined. Of 20 individual immune coyotes, 90% were reactive to at least one other antigen in the panel other than F1. The frequency of reactivity to low calcium response plasmid (pLcr)-encoded Yersinia protein kinase A (YpkA) and Yersinia outer protein D (YopD) was significantly greater than that previously observed in a murine model for plague. Additionally, both V antigen and plasminogen activator were reactive with over half of the serum samples tested. Reactivity to F1 was markedly less frequent in coyotes (35%). Twenty previously tested antibody-negative samples were also examined. While the majority were negative across the panel, 15% were positive for 1-3 non-F1 antigens. In vivo-induced antigen technology employed to identify novel chromosomal genes of Y. pestis that are up-regulated during infection resulted in the identification of five proteins, including a flagellar component (FliP) that was uniquely reactive with the coyote serum compared with immune serum from two other host species. Collectively, these data suggest that humoral immunity to pLcr-encoded antigens and the pesticin plasmid (pPst)-encoded Pla antigen may be relevant to plague resistance in coyotes. The serologic profile of Y. pestis chromosomal antigens up-regulated in vivo specific to C. latrans may provide insight into the differences in the pathogen-host responses during Y. pestis infection. ©Wildlife Disease Association 2011.


PubMed | University of Minnesota, Animal and Plant Health Inspection Service, University of Colorado at Boulder, Colorado State University and 5 more.
Type: Journal Article | Journal: PLoS biology | Year: 2016

The One Health initiative is a global effort fostering interdisciplinary collaborations to address challenges in human, animal, and environmental health. While One Health has received considerable press, its benefits remain unclear because its effects have not been quantitatively described. We systematically surveyed the published literature and used social network analysis to measure interdisciplinarity in One Health studies constructing dynamic pathogen transmission models. The number of publications fulfilling our search criteria increased by 14.6% per year, which is faster than growth rates for life sciences as a whole and for most biology subdisciplines. Surveyed publications clustered into three communities: one used by ecologists, one used by veterinarians, and a third diverse-authorship community used by population biologists, mathematicians, epidemiologists, and experts in human health. Overlap between these communities increased through time in terms of author number, diversity of co-author affiliations, and diversity of citations. However, communities continue to differ in the systems studied, questions asked, and methods employed. While the infectious disease research community has made significant progress toward integrating its participating disciplines, some segregation--especially along the veterinary/ecological research interface--remains.


PubMed | University of Michigan, Michigan State University, Bureau of Wildlife Management, Wildlife Disease Laboratory and McGill University
Type: Journal Article | Journal: Journal of Great Lakes research | Year: 2015

Polybrominated diphenyl ethers (PBDEs) are persistent and toxic flame-retardant chemicals widespread in the Great Lakes ecosystem. These chemicals are now being regulated and phased-out of the region; therefore it remains important to understand the extent of contamination in order to track the efficacy of recent actions. Here,


Lyashchenko K.P.,Chembio Diagnostic Systems, Inc. | Greenwald R.,Chembio Diagnostic Systems, Inc. | Esfandiari J.,Chembio Diagnostic Systems, Inc. | O'Brien D.J.,Wildlife Disease Laboratory | And 3 more authors.
Clinical and Vaccine Immunology | Year: 2013

Bovine tuberculosis (TB) in cervids remains a significant problem affecting farmed herds and wild populations. Traditional skin testing has serious limitations in certain species, whereas emerging serological assays showed promising diagnostic performance. The recently developed immunochromatographic dual-path platform (DPP) VetTB assay has two antigen bands, T1 (MPB83 protein) and T2 (CFP10/ESAT-6 fusion protein), for antibody detection. We evaluated the diagnostic accuracy of this test by using serum samples collected from groups of white-tailed deer experimentally inoculated with Mycobacterium bovis, M. avium subsp. paratuberculosis, or M. bovis BCG Pasteur. In addition, we used serum samples from farmed white-tailed deer in herds with no history of TB, as well as from free-ranging white-tailed deer culled during field surveillance studies performed in Michigan known to have bovine TB in the wild deer population. The DPP VetTB assay detected antibody responses in 58.1% of experimentally infected animals within 8 to 16 weeks postinoculation and in 71.9% of naturally infected deer, resulting in an estimated test sensitivity of 65.1% and a specificity of 97.8%. The higher seroreactivity found in deer with naturally acquiredM. bovis infection was associated with an increased frequency of antibody responses to the ESAT-6 and CFP10 proteins, resulting in a greater contribution of these antigens, in addition to MPB83, to the detection of seropositive animals, compared with experimental M. bovis infection. Deer experimentally inoculated with either M. avium subsp. paratuberculosis or M. bovis BCG Pasteur did not produce cross-reactive antibodies that could be detected by the DPP VetTB assay. The present findings demonstrate the relatively high diagnostic accuracy of the DPP VetTB test for white-tailed deer, especially in the detection of naturally infected animals. Copyright © 2013, American Society for Microbiology. All Rights Reserved.


Gortazar C.,Animal Health | Che Amat A.,University Putra Malaysia | O'Brien D.J.,Wildlife Disease Laboratory
Mammal Review | Year: 2015

Animal tuberculosis (TB) control is globally important for public health, economics and conservation. Wildlife species are often part of the Mycobacterium tuberculosis complex (MTC) maintenance community, complicating TB control attempts. We describe the current knowledge on global TB distribution and the significance of wildlife hosts; identify insufficiently known aspects of host pathology, ecology and epidemiology; present selected time series in wildlife TB; and summarize ongoing research on TB control, providing additional insight on vaccination. Six specific research needs are identified and discussed, namely: 1) complete the world map of wildlife MTC reservoirs and describe the structure of each local MTC host community; 2) identify the origin and behaviour of generalized diseased individuals within populations, and study the role of factors such as co-infections, re-infections and individual condition on TB pathogenesis; 3) quantify indirect MTC transmission within and between species; 4) define and harmonize wildlife disease monitoring protocols, and apply them in a way that allows proper population and prevalence trend comparisons in both space and time; 5) carry out controlled and replicated wildlife TB control experiments using single intervention tools; 6) analyse cost-efficiency and consider knowledge transfer aspects in promising intervention strategies. We believe that addressing these six points would push ahead our capacities for TB control. A remaining question is whether or not interventions on wildlife TB are at all justified. The answer depends on the local circumstances of each TB hotspot, and is likely to evolve during our collective progress towards TB control in livestock and in wildlife. © 2015 The Mammal Society and John Wiley & Sons Ltd.

Loading Wildlife Disease Laboratory collaborators
Loading Wildlife Disease Laboratory collaborators