Whist Laboratory

Paris, France

Whist Laboratory

Paris, France

Time filter

Source Type

PubMed | Dutch Childhood Oncology Group DCOG, Nancy University Hospital Center, National and Kapodistrian University of Athens, University of Turin and 28 more.
Type: | Journal: Frontiers in public health | Year: 2014

The rapid increase in mobile phone use in young people has generated concern about possible health effects of exposure to radiofrequency (RF) and extremely low frequency (ELF) electromagnetic fields (EMF). MOBI-Kids, a multinational case-control study, investigates the potential effects of childhood and adolescent exposure to EMF from mobile communications technologies on brain tumor risk in 14 countries. The study, which aims to include approximately 1,000 brain tumor cases aged 10-24years and two individually matched controls for each case, follows a common protocol and builds upon the methodological experience of the INTERPHONE study. The design and conduct of a study on EMF exposure and brain tumor risk in young people in a large number of countries is complex and poses methodological challenges. This manuscript discusses the design of MOBI-Kids and describes the challenges and approaches chosen to address them, including: (1) the choice of controls operated for suspected appendicitis, to reduce potential selection bias related to low response rates among population controls; (2) investigating a young study population spanning a relatively wide age range; (3) conducting a large, multinational epidemiological study, while adhering to increasingly stricter ethics requirements; (4) investigating a rare and potentially fatal disease; and (5) assessing exposure to EMF from communication technologies. Our experience in thus far developing and implementing the study protocol indicates that MOBI-Kids is feasible and will generate results that will contribute to the understanding of potential brain tumor risks associated with use of mobile phones and other wireless communications technologies among young people.


Calderon C.,Public Health England | Addison D.,Public Health England | Mee T.,Public Health England | Findlay R.,Public Health England | And 10 more authors.
Bioelectromagnetics | Year: 2014

Although radio frequency (RF) electromagnetic fields emitted by mobile phones have received much attention, relatively little is known about the extremely low frequency (ELF) magnetic fields emitted by phones. This paper summarises ELF magnetic flux density measurements on global system for mobile communications (GSM) mobile phones, conducted as part of the MOBI-KIDS epidemiological study. The main challenge is to identify a small number of generic phone models that can be used to classify the ELF exposure for the different phones reported in the study. Two-dimensional magnetic flux density measurements were performed on 47 GSM mobile phones at a distance of 25mm. Maximum resultant magnetic flux density values at 217Hz had a geometric mean of 221 (+198/-104)nT. Taking into account harmonic data, measurements suggest that mobile phones could make a substantial contribution to ELF exposure in the general population. The maximum values and easily available variables were poorly correlated. However, three groups could be defined on the basis of field pattern indicating that manufacturers and shapes of mobile phones may be the important parameters linked to the spatial characteristics of the magnetic field, and the categorization of ELF magnetic field exposure for GSM phones in the MOBI-KIDS study may be achievable on the basis of a small number of representative phones. Such categorization would result in a twofold exposure gradient between high and low exposure based on type of phone used, although there was overlap in the grouping. © 2013 Wiley Periodicals, Inc.


Kersaudy P.,Orange Group | Kersaudy P.,Whist Laboratory | Kersaudy P.,University of Marne-la-Vallée | Sudret B.,ETH Zurich | And 5 more authors.
Journal of Computational Physics | Year: 2015

In numerical dosimetry, the recent advances in high performance computing led to a strong reduction of the required computational time to assess the specific absorption rate (SAR) characterizing the human exposure to electromagnetic waves. However, this procedure remains time-consuming and a single simulation can request several hours. As a consequence, the influence of uncertain input parameters on the SAR cannot be analyzed using crude Monte Carlo simulation. The solution presented here to perform such an analysis is surrogate modeling. This paper proposes a novel approach to build such a surrogate model from a design of experiments. Considering a sparse representation of the polynomial chaos expansions using least-angle regression as a selection algorithm to retain the most influential polynomials, this paper proposes to use the selected polynomials as regression functions for the universal Kriging model. The leave-one-out cross validation is used to select the optimal number of polynomials in the deterministic part of the Kriging model. The proposed approach, called LARS-Kriging-PC modeling, is applied to three benchmark examples and then to a full-scale metamodeling problem involving the exposure of a numerical fetus model to a femtocell device. The performances of the LARS-Kriging-PC are compared to an ordinary Kriging model and to a classical sparse polynomial chaos expansion. The LARS-Kriging-PC appears to have better performances than the two other approaches. A significant accuracy improvement is observed compared to the ordinary Kriging or to the sparse polynomial chaos depending on the studied case. This approach seems to be an optimal solution between the two other classical approaches. A global sensitivity analysis is finally performed on the LARS-Kriging-PC model of the fetus exposure problem. © 2015 Elsevier Inc.


Dahdouh S.,Telecom ParisTech | Dahdouh S.,Whist Laboratory | Varsier N.,Whist Laboratory | Varsier N.,Orange Group | And 8 more authors.
Physics in Medicine and Biology | Year: 2016

Numerical dosimetry studies require the development of accurate numerical 3D models of the human body. This paper proposes a novel method for building 3D heterogeneous young children models combining results obtained from a semi-automatic multi-organ segmentation algorithm and an anatomy deformation method. The data consist of 3D magnetic resonance images, which are first segmented to obtain a set of initial tissues. A deformation procedure guided by the segmentation results is then developed in order to obtain five young children models ranging from the age of 5 to 37 months. By constraining the deformation of an older child model toward a younger one using segmentation results, we assure the anatomical realism of the models. Using the proposed framework, five models, containing thirteen tissues, are built. Three of these models are used in a prospective dosimetry study to analyze young child exposure to radiofrequency electromagnetic fields. The results lean to show the existence of a relationship between age and whole body exposure. The results also highlight the necessity to specifically study and develop measurements of child tissues dielectric properties. © 2016 Institute of Physics and Engineering in Medicine.


Yang Y.,Telecom ParisTech | Yang Y.,Whist Laboratory | Chevallier S.,University of Versailles | Wiart J.,Orange Group | And 3 more authors.
Eurasip Journal on Advances in Signal Processing | Year: 2014

To enforce a widespread use of efficient and easy to use brain-computer interfaces (BCIs), the inter-subject robustness should be increased and the number of electrodes should be reduced. These two key issues are addressed in this contribution, proposing a novel method to identify subject-specific time-frequency characteristics with a minimal number of electrodes. In this method, two alternative criteria, time-frequency discrimination factor (TFDF) and F score, are proposed to evaluate the discriminative power of time-frequency regions. Distinct from classical measures (e.g., Fisher criterion, r 2 coefficient), the TFDF is based on the neurophysiologic phenomena, on which the motor imagery BCI paradigm relies, rather than only from statistics. F score is based on the popular Fisher's discriminant and purely data driven; however, it differs from traditional measures since it provides a simple and effective measure for quantifying the discriminative power of a multi-dimensional feature vector. The proposed method is tested on BCI competition IV datasets IIa and IIb for discriminating right and left hand motor imagery. Compared to state-of-the-art methods, our method based on both criteria led to comparable or even better classification results, while using fewer electrodes (i.e., only two bipolar channels, C3 and C4). This work indicates that time-frequency optimization can not only improve the classification performance but also contribute to reducing the number of electrodes required in motor imagery BCIs. © 2014 Yang et al.; licensee Springer.


Yang Y.,Telecom ParisTech | Yang Y.,Whist Laboratory | Yang Y.,Technical University of Delft | Bloch I.,Telecom ParisTech | And 5 more authors.
Cognitive Computation | Year: 2016

Keeping a minimal number of channels is essential for designing a portable brain–computer interface system for daily usage. Most existing methods choose key channels based on spatial information without optimization of time segment for classification. This paper proposes a novel subject-specific channel selection method based on a criterion called F score to realize the parameterization of both time segment and channel positions. The F score is a novel simplified measure derived from Fisher’s discriminant analysis for evaluating the discriminative power of a group of features. The experimental results on a standard dataset (BCI competition III dataset IVa) show that our method can efficiently reduce the number of channels (from 118 channels to 9 in average) without a decrease in mean classification accuracy. Compared to two state-of-the-art methods in channel selection, our method leads to comparable or even better classification results with less selected channels. © 2016 Springer Science+Business Media New York


Yang Y.,Telecom ParisTech | Yang Y.,Whist Laboratory | Kyrgyzov O.,Telecom ParisTech | Kyrgyzov O.,Whist Laboratory | And 4 more authors.
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings | Year: 2013

Brain-computer interfaces (BCIs) are systems that record brain signals and then classify them to generate computer commands. Keeping a minimal number of channels (electrodes) is essential for developing portable BCIs. Unlike existing methods choosing channels without optimization of time segment for classification, this work proposes a novel subject-specific channel selection method based on a criterion derived from Fisher's discriminant analysis to realize the parametrization of both time segment and channel positions. The experimental results show that the method can efficiently reduce the number of channels (from 118 channels to no more than 11), and shorten the training time, without a significant decrease of classification accuracy on a standard dataset. © 2013 IEEE.


Wiart J.,Whist Laboratory | Wiart J.,Orange Group | Hadjem A.,Whist Laboratory | Hadjem A.,Orange Group | And 4 more authors.
Progress in Biophysics and Molecular Biology | Year: 2011

Children are more and more using wireless communication systems. This growth has strengthened public concern and has highlighted the need to assess the radio frequency (RF) exposure of children. In dosimetry, taking advantage of the improvement of High Performance Calculation systems, great efforts have been carried out to improve the numerical tools and human models used to assess the Specific Absorption Rate (SAR). This paper analyses progress in building child and foetus models for numerical dosimetry purpose. The simulation results, in terms of Specific Absorption Rate over 1 and 10 g of tissues, in specific organs such as brain and averaged over the whole body, are reported and analysed. The results show that compliance methods used nowadays to certify phones are valid for children. The studies also show that specific tissues such as peripheral brain tissues can have higher exposure with children than with adults. Studies performed with plane waves as sources and whole body children models show that the whole body SAR of children can be higher than the WBSAR of adults and that the compliance to ICNIRP reference levels does not guarantee the compliance to ICNIRP basic restrictions. Dealing with the foetus models and dielectric properties great efforts have been made. Preliminary results show that the foetus exposure is often lower than the mother exposure, with an important influencing parameter: the foetus position in the uterus. © 2011.


Dahdouh S.,Telecom ParisTech | Dahdouh S.,Whist Laboratory | Varsier N.,Whist Laboratory | Varsier N.,Orange Group | And 14 more authors.
Physics in Medicine and Biology | Year: 2014

Fetal dosimetry studies require the development of accurate numerical 3D models of the pregnant woman and the fetus. This paper proposes a 3D articulated fetal growth model covering the main phases of pregnancy and a pregnant woman model combining the utero-fetal structures and a deformable non-pregnant woman body envelope. The structures of interest were automatically or semi-automatically (depending on the stage of pregnancy) segmented from a database of images and surface meshes were generated. By interpolating linearly between fetal structures, each one can be generated at any age and in any position. A method is also described to insert the utero-fetal structures in the maternal body. A validation of the fetal models is proposed, comparing a set of biometric measurements to medical reference charts. The usability of the pregnant woman model in dosimetry studies is also investigated, with respect to the influence of the abdominal fat layer. © 2014 Institute of Physics and Engineering in Medicine.


PubMed | Whist Laboratory
Type: Journal Article | Journal: Progress in biophysics and molecular biology | Year: 2011

Children are more and more using wireless communication systems. This growth has strengthened public concern and has highlighted the need to assess the radio frequency (RF) exposure of children. In dosimetry, taking advantage of the improvement of High Performance Calculation systems, great efforts have been carried out to improve the numerical tools and human models used to assess the Specific Absorption Rate (SAR). This paper analyses progress in building child and foetus models for numerical dosimetry purpose. The simulation results, in terms of Specific Absorption Rate over 1 and 10 g of tissues, in specific organs such as brain and averaged over the whole body, are reported and analysed. The results show that compliance methods used nowadays to certify phones are valid for children. The studies also show that specific tissues such as peripheral brain tissues can have higher exposure with children than with adults. Studies performed with plane waves as sources and whole body children models show that the whole body SAR of children can be higher than the WBSAR of adults and that the compliance to ICNIRP reference levels does not guarantee the compliance to ICNIRP basic restrictions. Dealing with the foetus models and dielectric properties great efforts have been made. Preliminary results show that the foetus exposure is often lower than the mother exposure, with an important influencing parameter: the foetus position in the uterus.

Loading Whist Laboratory collaborators
Loading Whist Laboratory collaborators