Entity

Time filter

Source Type

Wheaton, IL, United States

Bishop R.C.,Wheaton College at Illinois
Interface Focus | Year: 2012

Complexity-nonlinear dynamics for my purposes in this essay-is rich with metaphysical and epistemological implications but is receiving sustained philosophical analysis only recently. I will explore some of the subtleties of causation and constraint in Rayleigh- Be ́nard convection as an example of a complex phenomenon, and extract some lessons for further philosophical reflection on top-down constraint and causation particularly with respect to causal foundationalism. © 2011 The Royal Society. Source


Bishop R.C.,Wheaton College at Illinois
Studies in History and Philosophy of Science Part B - Studies in History and Philosophy of Modern Physics | Year: 2010

Along with exploring some of the necessary conditions for the chemistry of our world given what we know about quantum mechanics, I will also discuss a different reductionist challenge than is usually considered in debates on the relationship of chemistry to physics. Contrary to popular belief, classical physics does not have a reductive relationship to quantum mechanics and some of the reasons why reduction fails between classical and quantum physics are the same as for why reduction fails between chemistry and quantum physics. However, a neoreductionist can accept that classical physics has some amount of autonomy from quantum mechanics, but still try to maintain that classical+quantum physics taken as a whole reduces chemistry to physics. I will explore some of the obstacles lying in the neoreductionist's path with respect to quantum chemistry and thereby hope to shed more light on the conditions necessary for the chemistry of our world. © 2009 Elsevier Ltd. Source


Francis S.H.,Vanderbilt University | Busch J.L.,Wheaton College at Illinois | Corbin J.D.,Vanderbilt University
Pharmacological Reviews | Year: 2010

To date, studies suggest that biological signaling by nitric oxide (NO) is primarily mediated by cGMP, which is synthesized by NO-activated guanylyl cyclases and broken down by cyclic nucleotide phosphodiesterases (PDEs). Effects of cGMP occur through three main groups of cellular targets: cGMP-dependent protein kinases (PKGs), cGMP-gated cation channels, and PDEs. cGMP binding activates PKG, which phosphorylates serines and threonines on many cellular proteins, frequently resulting in changes in activity or function, subcellular localization, or regulatory features. The proteins that are so modified by PKG commonly regulate calcium homeostasis, calcium sensitivity of cellular proteins, platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-signaling pathway, and other processes. Current therapies that have successfully targeted the NO-signaling pathway include nitrovasodilators (nitroglycerin), PDE5 inhibitors [sildenafil (Viagra and Revatio), vardenafil (Levitra), and tadalafil (Cialis and Adcirca)] for treatment of a number of vascular diseases including angina pectoris, erectile dysfunction, and pulmonary hypertension; the PDE3 inhibitors [cilostazol (Pletal) and milrinone (Primacor)] are used for treatment of intermittent claudication and acute heart failure, respectively. Potential for use of these medications in the treatment of other maladies continues to emerge. Copyright © 2010 by The American Society for Pharmacology and Experimental Therapeutics. Source


Kristen Page L.,Wheaton College at Illinois
International Journal for Parasitology: Parasites and Wildlife | Year: 2013

Human demands on natural resources result in landscape changes that facilitate the emergence of disease. Most emerging diseases are zoonotic, and some of these pathogens play a role in the decline of vulnerable wildlife species. Baylisascaris procyonis, the common roundworm parasite of raccoons (Procyon lotor), is a well recognized zoonotic infection that has many of the properties associated with a pathogen capable of driving extinction. It is highly non-specific and frequently pathogenic with regard to paratenic hosts, which contact eggs of B. procyonis at raccoon latrines. Eggs accumulate at latrines and remain viable for many years. Transmission of B. procyonis is sensitive to changes in land-use, and fragmented habitats increase contact rates between raccoons, potential paratenic hosts, and the parasite. Raccoons, and subsequently B. procyonis, have been introduced to Europe and Japan, where naïve vertebrates may be exposed to the parasite. Finally, domestic animals and exotic pets can carry patent infections with B. procyonis, thus increasing environmental contamination beyond raccoon latrines, and expanding the area of risk to potential paratenic hosts. This parasite can potentially contribute to extinctions of vulnerable species, as exemplified by the case of the Allegheny woodrat (Neotoma magister), a species that has experienced local declines and extinctions that are linked to B. procyonis. Conservation strategies for vulnerable species should consider the transmission ecology of parasitic pathogens, like B. procyonis. © 2013 The Author. Source


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: CERAMICS | Award Amount: 264.78K | Year: 2011

NON-TECHNICAL DESCRIPTION: This three-year research project is investigating a promising class of materials for use as lighting and/or laser applications. The materials of interest are oxides containing the rare earth ions praseodymium and terbium, which give off red and green light, respectively. These materials are interesting because there exists a quantum state that allows ultraviolet energy to be put into the system efficiently. Subsequently, that energy can be transformed to red or green light. By changing the composition of the materials, it is possible to alter the characteristics of this quantum state to maximize the energy input and extract light at the desired color. The goals of the project are to: (1) gain insight into the physical and chemical properties of this state, and (2) to optimize the visible light output of these systems for applications to phosphors used in solid-state lighting and in display materials, and for solid-state laser applications.


TECHNICAL DESCRIPTION: This three-year research project investigates a charge transfer state of d0 transition metal oxides doped with rare-earth ions (praseodymium and terbium) using the techniques of luminescence spectroscopy. The project includes an experimental study into the fundamental properties of the charge transfer state, and into its role in the dynamics of the relaxation processes that lead to emission from the rare earth ions. The energy of the charge transfer state is being tuned to maximize the luminescence efficiency of the specified rare earth ions. This tuning is being accomplished by changing the composition of the materials and by altering the particle size down to the nm-scale. The project provides significant training to undergraduates, giving them hands-on experience in the laboratory, allowing them to present their work at scientific conferences, and by collaborating with scientists at other universities.

Discover hidden collaborations