Time filter

Source Type

Gainesville, FL, United States

Georgiadis M.M.,Indiana University - Purdue University Indianapolis | Georgiadis M.M.,Indiana University | Singh I.,Indiana University | Kellett W.F.,Indiana University - Purdue University Indianapolis | And 3 more authors.
Journal of the American Chemical Society | Year: 2015

Expanded genetic systems are most likely to work with natural enzymes if the added nucleotides pair with geometries that are similar to those displayed by standard duplex DNA. Here, we present crystal structures of 16-mer duplexes showing this to be the case with two nonstandard nucleobases (Z, 6-amino-5-nitro-2(1H)-pyridone and P, 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)one) that were designed to form a Z:P pair with a standard edge on Watson-Crick geometry, but joined by rearranged hydrogen bond donor and acceptor groups. One duplex, with four Z:P pairs, was crystallized with a reverse transcriptase host and adopts primarily a B-form. Another contained six consecutive Z:P pairs; it crystallized without a host in an A-form. In both structures, Z:P pairs fit canonical nucleobase hydrogen-bonding parameters and known DNA helical forms. Unique features include stacking of the nitro group on Z with the adjacent nucleobase ring in the A-form duplex. In both B- and A-duplexes, major groove widths for the Z:P pairs are approximately 1 Å wider than those of comparable G:C pairs, perhaps to accommodate the large nitro group on Z. Otherwise, ZP-rich DNA had many of the same properties as CG-rich DNA, a conclusion supported by circular dichroism studies in solution. The ability of standard duplexes to accommodate multiple and consecutive Z:P pairs is consistent with the ability of natural polymerases to biosynthesize those pairs. This, in turn, implies that the GACTZP synthetic genetic system can explore the entire expanded sequence space that additional nucleotides create, a major step forward in this area of synthetic biology. © 2015 American Chemical Society. Source

Laos R.,Westheimer Institute of Science and Technology | Shaw R.,Westheimer Institute of Science and Technology | Leal N.A.,Westheimer Institute of Science and Technology | Gaucher E.,Georgia Institute of Technology | Benner S.,Westheimer Institute of Science and Technology
Biochemistry | Year: 2013

Artificial genetic systems have been developed by synthetic biologists over the past two decades to include additional nucleotides that form additional nucleobase pairs independent of the standard T:A and C:G pairs. Their use in various tools to detect and analyze DNA and RNA requires polymerases that synthesize duplex DNA containing unnatural base pairs. This is especially true for nested polymerase chain reaction (PCR), which has been shown to dramatically lower noise in multiplexed nested PCR if nonstandard nucleotides are used in their external primers. We report here the results of a directed evolution experiment seeking variants of Taq DNA polymerase that can support the nested PCR amplification with external primers containing two particular nonstandard nucleotides, 2-amino-8-(1′-β-d-2′-deoxyribofuranosyl)imidazo[1, 2-a]-1,3,5-triazin-4(8H)-one (trivially called P) that pairs with 6-amino-5-nitro-3-(1′-β-d-2′-deoxyribofuranosyl)-2(1H) -pyridone (trivially called Z). Variants emerging from the directed evolution experiments were shown to pause less when challenged in vitro to incorporate dZTP opposite P in a template. Interestingly, several sites involved in the adaptation of Taq polymerases in the laboratory were also found to have displayed "heterotachy" (different rates of change) in their natural history, suggesting that these sites were involved in an adaptive change in natural polymerase evolution. Also remarkably, the polymerases evolved to be less able to incorporate dPTP opposite Z in the template, something that was not selected. In addition to being useful in certain assay architectures, this result underscores the general rule in directed evolution that "you get what you select for". © 2013 American Chemical Society. Source

Discover hidden collaborations