Entity

Time filter

Source Type


Lee Y.-W.,State University of New York at Buffalo | Stachowiak E.K.,State University of New York at Buffalo | Stachowiak E.K.,Western New York Stem Cells Culture and Analysis Center | Birkaya B.,State University of New York at Buffalo | And 8 more authors.
PLoS ONE | Year: 2013

Nerve growth factor (NGF) is the founding member of the polypeptide neurotrophin family responsible for neuronal differentiation. To determine whether the effects of NGF rely upon novel Integrative Nuclear FGF Receptor-1 (FGFR1) Signaling (INFS) we utilized the PC12 clonal cell line, a long-standing benchmark model of sympathetic neuronal differentiation. We demonstrate that NGF increases expression of the fgfr1 gene and promotes trafficking of FGFR1 protein from cytoplasm to nucleus by inhibiting FGFR1 nuclear export. Nuclear-targeted dominant negative FGFR1 antagonizes NGF-induced neurite outgrowth, doublecortin (dcx) expression and activation of the tyrosine hydroxylase (th) gene promoter, while active constitutive nuclear FGFR1 mimics the effects of NGF. NGF increases the expression of dcx, th, βIII tubulin, nurr1 and nur77, fgfr1and fibroblast growth factor-2 (fgf-2) genes, while enhancing binding of FGFR1and Nur77/Nurr1 to those genes. NGF activates transcription from isolated NurRE and NBRE motifs. Nuclear FGFR1 transduces NGF activation of the Nur dimer and raises basal activity of the Nur monomer. Cooperation of nuclear FGFR1 with Nur77/Nurr1 in NGF signaling expands the integrative functions of INFS to include NGF, the first discovered pluripotent neurotrophic factor. © 2013 Lee et al. Source


Lee Y.-W.,State University of New York at Buffalo | Terranova C.,State University of New York at Buffalo | Birkaya B.,State University of New York at Buffalo | Narla S.,State University of New York at Buffalo | And 13 more authors.
Journal of Cellular Biochemistry | Year: 2012

FGF Receptor-1 (FGFR1), a membrane-targeted protein, is also involved in independent direct nuclear signaling. We show that nuclear accumulation of FGFR1 is a common response to retinoic acid (RA) in pluripotent embryonic stem cells (ESC) and neural progenitors and is both necessary and sufficient for neuronal-like differentiation and accompanying neuritic outgrowth. Dominant negative nuclear FGFR1, which lacks the tyrosine kinase domain, prevents RA-induced differentiation while full-length nuclear FGFR1 elicits differentiation in the absence of RA. Immunoprecipitation and GST assays demonstrate that FGFR1 interacts with RXR, RAR and their Nur77 and Nurr1 partners. Conditions that promote these interactions decrease the mobility of nuclear FGFR1 and RXR in live cells. RXR and FGFR1 co-associate with 5'-Fluorouridine-labeled transcription sites and with RA Responsive Elements (RARE). RA activation of neuronal (tyrosine hydroxylase) and neurogenic (fgf-2 and fgfr1) genes is accompanied by increased FGFR1, Nur, and histone H3.3 binding to their regulatory sequences. Reporter-gene assays show synergistic activations of RARE, NBRE, and NurRE by FGFR1, RAR/RXR, and Nurs. As shown for mESC differentiation, FGFR1 mediates gene activation by RA and augments transcription in the absence of RA. Cooperation of FGFR1 with RXR/RAR and Nurs at targeted genomic sequences offers a new mechanism in developmental gene regulation. © 2012 Wiley Periodicals, Inc. Source

Discover hidden collaborations