Entity

Time filter

Source Type

Birmingham, United Kingdom

McKay Bounford K.,West Midlands Regional Genetics Service | McKay Bounford K.,University of Birmingham | Gissen P.,University College London
Journal of Neurology | Year: 2014

Niemann Pick disease type C (NP-C) is a rare autosomal recessive disorder that results from mutations in either the NPC1 or the NPC2 gene. The estimated incidence of NP-C is 1 in 120,000 live births, although the frequency of cases is higher in some isolated populations. More than 350 different NPC1 and NPC2 gene mutations have been reported in patients with confirmed diagnoses. Approximately 95 % of patients harbour mutations in NPC1, with most of the remaining patients having NPC2 mutations. The traditional methods for diagnosing patients with NP-C include histopathological analysis of bone marrow aspirate, liver and skin biopsies, fluorescent and electron microscopy, and cholesterol esterification assays. New laboratory methods that use mass spectroscopy for detection of cholesterol metabolism products are promising to become part of the routine diagnostic and screening tests in the near future, but further evaluation is required to determine the sensitivity and specificity of these analyses in patients with different age-at-onset forms of NP-C. Although filipin staining and cholesterol esterification studies performed in patient skin fibroblasts can, in experienced hands, provide a robust approach to diagnosing NP-C, they are only available in a few specialist laboratories. Thus, sequencing of NPC1 and NPC2 is currently the most universally accessible diagnostic technique in this disorder. © 2014 The Author(s). Source


Meyer E.,University of Birmingham | Kurian M.A.,University of Birmingham | Kurian M.A.,SteelHouse | Pasha S.,University of Birmingham | And 3 more authors.
Molecular Genetics and Metabolism | Year: 2010

Hereditary folate malabsorption (HFM) is a rare autosomal recessive disorder which is characterized by impaired intestinal folate malabsorption and impaired folate transport into the central nervous system. Mutations in the intestinal folate transporter PCFT have been reported previously in only 10 individuals with this disorder. The purpose of the current study was to describe the clinical phenotype and determine the molecular basis for this disorder in a family with four affected individuals. A consanguineous family of Pakistani origin with autosomal recessive HFM was ascertained and clinically phenotyped. After genetic linkage studies all coding exons of the PCFT gene were screened for mutations by direct sequencing. The clinical phenotype of four affected patients is described. Direct sequencing of PCFT revealed a novel homozygous frameshift mutation (c.194dupG) at a mononucleotide repeat in exon 1 predicted to result in a truncated protein (p.Cys66LeufsX99). This report extends current knowledge on the phenotypic manifestations of HFM and the PCFT mutation spectrum. © 2009 Elsevier Inc. All rights reserved. Source


Hill V.K.,University of Birmingham | Dunwell T.,University of Birmingham | Catchpoole D.,The Childrens Hospital at Westmead | Krex D.,TU Dresden | And 5 more authors.
Epigenetics | Year: 2011

The WW-domain containing protein KIBRA has recently been identified as a new member of the Salvador/Warts/Hippo (SWH) pathway in Drosophila and is shown to act as a tumor suppressor gene in Drosophila. This pathway is conserved in humans and members of the pathway have been shown to act as tumor suppressor genes in mammalian systems. We determined the methylation status of the 5' CpG island associated with the KIBRA gene in human cancers. In a large panel of cancer cell lines representing common epithelial cancers KIBRA was unmethylated. But in pediatric acute lymphocytic leukemia (ALL) cell lines KIBRA showed frequent hypermethylation and silencing of gene expression, which could be reversed by treatment with 5-aza-2'-deoxycytidine. In ALL patient samples KIBRA was methylated in 70% B-ALL but was methylated in <20% T-ALL leukemia (p = 0.0019). In B-ALL KIBRA methylation was associated with ETV6/RUNX1 [t(12;21) (p13;q22)] chromosomal translocation (p = 0.0082) phenotype, suggesting that KIBRA may play an important role in t(12;21) leukemogenesis. In ALL paired samples at diagnosis and remission KIBRA methylation was seen in diagnostic but not in any of the remission samples accompanied by loss of KIBRA expression in disease state compared to patients in remission. Hence KIBRA methylation occurs frequently in B-cell acute lymphocytic leukemia but not in epithelial cancers and is linked to specific genetic event in B-ALL. © 2011 Landes Bioscience. Source


Mavaddat N.,Center for Cancer Genetic Epidemiology | Peock S.,Center for Cancer Genetic Epidemiology | Frost D.,Center for Cancer Genetic Epidemiology | Ellis S.,Center for Cancer Genetic Epidemiology | And 31 more authors.
Journal of the National Cancer Institute | Year: 2013

Background Reliable estimates of cancer risk are critical for guiding management of BRCA1 and BRCA2 mutation carriers. The aims of this study were to derive penetrance estimates for breast cancer, ovarian cancer, and contralateral breast cancer in a prospective series of mutation carriers and to assess how these risks are modified by common breast cancer susceptibility alleles. Methods Prospective cancer risks were estimated using a cohort of 978 BRCA1 and 909 BRCA2 carriers from the United Kingdom. Nine hundred eighty-eight women had no breast or ovarian cancer diagnosis at baseline, 1509 women were unaffected by ovarian cancer, and 651 had been diagnosed with unilateral breast cancer. Cumulative risks were obtained using Kaplan-Meier estimates. Associations between cancer risk and covariables of interest were evaluated using Cox regression. All statistical tests were two-sided. Results The average cumulative risks by age 70 years for BRCA1 carriers were estimated to be 60% (95% confidence interval [CI] = 44% to 75%) for breast cancer, 59% (95% CI = 43% to 76%) for ovarian cancer, and 83% (95% CI = 69% to 94%) for contralateral breast cancer. For BRCA2 carriers, the corresponding risks were 55% (95% CI = 41% to 70%) for breast cancer, 16.5% (95% CI = 7.5% to 34%) for ovarian cancer, and 62% (95% CI = 44% to 79.5%) for contralateral breast cancer. BRCA2 carriers in the highest tertile of risk, defined by the joint genotype distribution of seven single nucleotide polymorphisms associated with breast cancer risk, were at statistically significantly higher risk of developing breast cancer than those in the lowest tertile (hazard ratio = 4.1, 95% CI = 1.2 to 14.5; P =. 02). Conclusions Prospective risk estimates confirm that BRCA1 and BRCA2 carriers are at high risk of developing breast, ovarian, and contralateral breast cancer. Our results confirm findings from retrospective studies that common breast cancer susceptibility alleles in combination are predictive of breast cancer risk for BRCA2 carriers. © 2013 The Author. Source


Hanson D.,University of Manchester | Murray P.G.,University of Manchester | O'Sullivan J.,University of Manchester | Urquhart J.,University of Manchester | And 12 more authors.
American Journal of Human Genetics | Year: 2011

3-M syndrome, a primordial growth disorder, is associated with mutations in CUL7 and OBSL1. Exome sequencing now identifies mutations in CCDC8 as a cause of 3-M syndrome. CCDC8 is a widely expressed gene that is transcriptionally associated to CUL7 and OBSL1, and coimmunoprecipitation indicates a physical interaction between CCDC8 and OBSL1 but not CUL7.We propose that CUL7, OBSL1, and CCDC8 are members of a pathway controlling mammalian growth. © 2011 by The American Society of Human Genetics. All rights reserved. Source

Discover hidden collaborations