Entity

Time filter

Source Type


Li F.,Johns Hopkins University | Li F.,Kaiser Permanente | Shen Y.,Harvard University | Sharkey F.H.,Microarray Facility | And 21 more authors.
European Journal of Medical Genetics | Year: 2010

The use of comparative genomic hybridization (CGH) and single nucleotide polymorphism (SNP) arrays has dramatically altered the approach to identification of genetic alterations that can explain intellectual disability and /or congenital anomalies. However, the discovery of numerous copy number changes with benign or unknown clinical significance has made interpretation problematic. Submicroscopic duplication of Xp22.31 has been reported as either a possible cause of intellectual disability and/or developmental delay or a benign variant. Here we report 29 individuals with the microduplication found as part of microarray analysis of 7793 samples submitted to an international group of 13 clinical laboratories. The referral reasons varied and included developmental delay, intellectual disability, autism, dysmorphic features and/or multiple congenital anomalies. The size of the Xp22.31 duplication varied between 149 kb and 1.74 Mb and included the steroid sulfatase (STS) gene with the male to female ratio of 0.7. Duplication within this segment is seen at a frequency of 0.15% in a healthy control population, whereas a frequency of 0.37% was observed in our cohort of individuals with abnormal phenotypes. We present a detailed comparison of the breakpoints, inheritance, X-inactivation and clinical phenotype in our cohort and a review of the literature for a total of 41 patients. To date, this report is the largest compilation of clinical and array data regarding the microduplication of Xp22.31 and will serve to broaden the knowledge of regions involving copy number variation (CNV). © 2010 Elsevier Masson SAS. All rights reserved.


Yamazaki F.,U.S. National Institutes of Health | Kim H.H.,U.S. National Institutes of Health | Lau P.,U.S. National Institutes of Health | Lau P.,Catholic University of Leuven | And 5 more authors.
PLoS ONE | Year: 2014

The purpose of this study was to expand our knowledge of small RNAs, which are known to function within protein complexes to modulate the transcriptional output of the cell. Here we describe two previously unrecognized, small RNAs, termed pY RNA1-s1 and pY RNA1-s2 (processed Y RNA1-stem -1 and -2), thereby expanding the list of known small RNAs. pY RNA1-s1 and pY RNA1-s2 were discovered by RNA sequencing and found to be 20-fold more abundant in the retina than in 14 other rat tissues. Retinal expression of pY RNAs is highly conserved, including expression in the human retina, and occurs in all retinal cell layers. Mass spectrometric analysis of pY RNA1-S2 binding proteins in retina indicates that pY RNA1-s2 selectively binds the nuclear matrix protein Matrin 3 (Matr3) and to a lesser degree to hnrpul1 (heterogeneous nuclear ribonucleoprotein U-like protein). In contrast, pY RNA1-s1 does not bind these proteins. Accordingly, the molecular mechanism of action of pY RNA1-s2 is likely be through an action involving Matr3; this 95 kDa protein has two RNA recognition motifs (RRMs) and is implicated in transcription and RNA-editing. The high affinity binding of pY RNA1-s2 to Matr3 is strongly dependent on the sequence of the RNA and both RRMs of Matr3. Related studies also indicate that elements outside of the RRM region contribute to binding specificity and that phosphorylation enhances pY RNA-s2/Matr3 binding. These observations are of significance because they reveal that a previously unrecognized small RNA, pY RNA1-s2, binds selectively to Matr3. Hypothetically, pY RNA1-S2 might act to modulate cellular function through this molecular mechanism. The retinal enrichment of pY RNA1-s2 provides reason to suspect that the pY RNA1-s2/Matr3 interaction could play a role in vision.


Parry H.M.,University of Birmingham | Zuo J.,University of Birmingham | Frumento G.,University of Birmingham | Mirajkar N.,University of Birmingham | And 5 more authors.
Immunity and Ageing | Year: 2015

Background: Cytomegalovirus (CMV) is a highly prevalent herpesvirus, which maintains lifelong latency and places a significant burden on host immunity. Infection is associated with increased rates of vascular disease and overall mortality in the elderly and there is an urgent need for improved understanding of the viral-host balance during ageing. Results: Viral DNA was detected in 24 % (9/37) of donors below the age of 70 but was found in all individuals above this age. Furthermore, the mean CMV load was only 8.6 copies per 10,000 monocytes until approximately 70 years of age when it increased by almost 30 fold to 249 copies in older individuals (p < 0.0001). CMV was found within classical CD14+ monocytes and was not detectable within the CD14-CD16+ subset. The titre of CMV-specific IgG increased inexorably with age indicating that loss of humoral immunity is not a determinant of the increased viral load. In contrast, although cellular immunity to the structural late protein pp65 increased with age, the T cell response to the immediate early protein IE1 decreased in older donors. Conclusion: These data reveal that effective control of CMV is impaired during healthy ageing, most probably due to loss of cellular control of early viral reactivation. This information will be of value in guiding efforts to reduce CMV-associated health complications in the elderly. © 2015 Parry et al.


Parry H.M.,University of Birmingham | Zuo J.,University of Birmingham | Frumento G.,University of Birmingham | Mirajkar N.,University of Birmingham | And 6 more authors.
Immunity and Ageing | Year: 2016

Background: Cytomegalovirus (CMV) is a highly prevalent herpesvirus, which maintains lifelong latency and places a significant burden on host immunity. Infection is associated with increased rates of vascular disease and overall mortality in the elderly and there is an urgent need for improved understanding of the viral-host balance during ageing. CMV is extremely difficult to detect in healthy donors, however, using droplet digital PCR of DNA from peripheral blood monocytes, we obtained an absolute quantification of viral load in 44 healthy donors across a range of ages. Results: Viral DNA was detected in 24 % (9/37) of donors below the age of 70 but was found in all individuals above this age. Furthermore, the mean CMV load was only 8.6 copies per 10,000 monocytes until approximately 70 years of age when it increased by almost 30 fold to 249 copies in older individuals (p < 0.0001). CMV was found within classical CD14+ monocytes and was not detectable within the CD14-CD16+ subset. The titre of CMV-specific IgG increased inexorably with age indicating that loss of humoral immunity is not a determinant of the increased viral load. In contrast, although cellular immunity to the structural late protein pp65 increased with age, the T cell response to the immediate early protein IE1 decreased in older donors. Conclusion: These data reveal that effective control of CMV is impaired during healthy ageing, most probably due to loss of cellular control of early viral reactivation. This information will be of value in guiding efforts to reduce CMV-associated health complications in the elderly. © 2015 Parry et al.


Moey C.,University of Adelaide | Hinze S.J.,University of Adelaide | Brueton L.,Clinical Genetics Unit | Morton J.,Clinical Genetics Unit | And 8 more authors.
European Journal of Human Genetics | Year: 2016

Copy number variations are a common cause of intellectual disability (ID). Determining the contribution of copy number variants (CNVs), particularly gains, to disease remains challenging. Here, we report four males with ID with sub-microscopic duplications at Xp11.2 and review the few cases with overlapping duplications reported to date. We established the extent of the duplicated regions in each case encompassing a minimum of three known disease genes TSPYL2, KDM5C and IQSEC2 with one case also duplicating the known disease gene HUWE1. Patients with a duplication encompassing TSPYL2, KDM5C and IQSEC2 without gains of nearby SMC1A and HUWE1 genes have not been reported thus far. All cases presented with ID and significant deficits of speech development. Some patients also manifested behavioral disturbances such as hyperactivity and attention-deficit/hyperactivity disorder. Lymphoblastic cell lines from patients show markedly elevated levels of TSPYL2, KDM5C and SMC1A, transcripts consistent with the extent of their CNVs. The duplicated region in our patients contains several genes known to escape X-inactivation, including KDM5C, IQSEC2 and SMC1A. In silico analysis of expression data in selected gene expression omnibus series indicates that dosage of these genes, especially IQSEC2, is similar in males and females despite the fact they escape from X-inactivation in females. Taken together, the data suggest that gains in Xp11.22 including IQSEC2 cause ID and are associated with hyperactivity and attention-deficit/hyperactivity disorder, and are likely to be dosage-sensitive in males. © 2016 Macmillan Publishers Limited.

Discover hidden collaborations