Kolkata, India

West Bengal State University is a newly established university situated in Berunanpukuria,Malikapur, Barasat, North 24 Paraganas, in the city of Kolkata, West Bengal, India. All the 59 colleges in the district of North 24 Parganas, which were formerly affiliated with the University of Calcutta, are affiliated to this university. Wikipedia.


Time filter

Source Type

Hossain Z.,West Bengal State University | Komatsu S.,Japan National Agriculture and Food Research Organization
Frontiers in Plant Science | Year: 2012

Modulation of plant proteome composition is an inevitable process to cope with the environmental challenges including heavy metal (HM) stress. Soil and water contaminated with hazardous metals not only cause permanent and irreversible health problems, but also result substantial reduction in crop yields. In course of time, plants have evolved complex mechanisms to regulate the uptake, mobilization, and intracellular concentration of metal ions to alleviate the stress damages. Since, the functional translated portion of the genome plays an essential role in plant stress response, proteomic studies provide us a finer picture of protein networks and metabolic pathways primarily involved in cellular detoxification and tolerance mechanism. In the present review, an attempt is made to present the state of the art of recent development in proteomic techniques and significant contributions made so far for better understanding the complex mechanism of plant metal stress acclimation. Role of metal stress-related proteins involved in antioxidant defense system and primary metabolism is critically reviewed to get a bird's-eye view on the different strategies of plants to detoxify HMs. In addition to the advantages and disadvantages of different proteomic methodologies, future applications of proteome study of subcellular organelles are also discussed to get the new insights into the plant cell response to HMs. © 2013 Hossain and Komatsu.


Sahu B.,West Bengal State University
Astrophysics and Space Science | Year: 2012

The nonlinear wave structures of ion acoustic waves (IAWs) in an unmagnetized plasma consisting of nonextensive electrons and thermal positrons are studied in bounded nonplanar geometry. Using reductive perturbation technique we have derived cylindrical and spherical Korteweg-de Vries-Burgers' (KdVB) equations for IAWs. The presence of nonextensive q-distributed electrons is shown to influence the solitary and shock waves. Furthermore, in the existence of ion kinematic viscosity, the shock wave structure appears. Also, the effects of nonextensivity of electrons, ion kinematic viscosities, positron concentration on the properties of ion acoustic shock waves (IASWs) are discussed in nonplanar geometry. It is found that both compressive and rarefactive type solitons or shock waves are obtained depending on the plasma parameter. © 2011 Springer Science+Business Media B.V.


Gangopadhyay S.,West Bengal State University | Gangopadhyay S.,Inter-University Center for Astronomy and Astrophysics
Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics | Year: 2013

In this Letter, based on the Sturm-Liouville eigenvalue approach, we analytically investigate the properties of holographic superconductors in the background of pure Einstein and Gauss-Bonnet gravity taking into account the backreaction of the spacetime. Higher value of the backreaction parameter results in a harder condensation to form in both cases. The analytical results obtained are found to be in good agreement with the existing numerical results. © 2013 Elsevier B.V.


Shaw A.K.,West Bengal State University | Hossain Z.,West Bengal State University
Chemosphere | Year: 2013

Indiscriminate release of metal oxide nanoparticles (NPs) into the environment due to anthropogenic activities has become a serious threat to the ecological system including plants. The present study assesses the toxicity of nano-CuO on rice (Oryza sativa cv. Swarna) seedlings. Three different levels of stress (0.5mM, 1.0mM and 1.5mM suspensions of copper II oxide, <50nm particle size) were imposed and seedling growth performance was studied along control at 7 and 14d of experiment. Modulation of ascorbate-glutathione cycle, membrane damage, in vivo ROS detection, foliar H2O2 and proline accumulation under nano-CuO stress were investigated in detail to get an overview of nano-stress response of rice. Seed germination percentage was significantly reduced under stress. Higher uptake of Evans blue by nano-CuO stressed roots over control indicates loss of root cells viability. Presence of dark blue and deep brown spots on leaves evident after histochemical staining with NBT and DAB respectively indicate severe oxidative burst under nano-copper stress. APX activity was found to be significantly increased in 1.0 and 1.5mM CuO treatments. Nevertheless, elevated APX activity might be insufficient to scavenge all H2O2 produced in excess under nano-CuO stress. That may be the reason why stressed leaves accumulated significantly higher H2O2 instead of having enhanced APX activity. In addition, increased GR activity coupled with isolated increase in GSH/GSSG ratio does not seem to prevent cells from oxidative damages, as evident from higher MDA level in leaves of nano-CuO stressed seedlings over control. Enhanced proline accumulation also does not give much protection against nano-CuO stress. Decline in carotenoids level might be another determining factor of meager performance of rice seedlings in combating nano-CuO stress induced oxidative damages. © 2013 Elsevier Ltd.


Sahu B.,West Bengal State University
Physics of Plasmas | Year: 2011

Using the standard reductive perturbation technique, nonlinear cylindrical and spherical Kadomtsev-Petviashvili equations are derived for the propagation of ion acoustic solitary waves in an unmagnetized collisionless plasma with kappa distributed electrons and warm ions. The influence of kappa-distributed electrons and the effects caused by the transverse perturbation on cylindrical and spherical ion acoustic waves (IAWs) are investigated. It is observed that increase in the kappa distributed electrons (i.e., decreasing ) decreases the amplitude of the solitary electrostatic potential structures. The numerical results are presented to understand the formation of ion acoustic solitary waves with kappa-distributed electrons in nonplanar geometry. The present investigation may have relevance in the study of propagation of IAWs in space and laboratory plasmas. © 2011 American Institute of Physics.


Sahu B.,West Bengal State University
Physics of Plasmas | Year: 2010

The problem of arbitrary amplitude electron acoustic solitary waves (EASWs) are discussed using Sagdeev's pseudopotential technique for a plasma comprising cold electrons, superthermal hot electrons, and stationary ions. The standard normal-mode analysis is used to study the dispersion relation for linear waves. It is found that the present plasma model supports EASWs having negative potential. The influence of superthermal hot electrons on the present plasma model is investigated for the existence of solitary waves. The investigation shows that the solitary structure ceases to exist when the parameter κ crosses a certain limit. It is also found that the small amplitude double layer solution can exist in such a plasma system in some parametric regions. It is shown that solitary structures and double layers are affected by superthermality, as well as by relevant plasma parameters. © 2010 American Institute of Physics.


Saha A.,West Bengal State University
Physical Review D - Particles, Fields, Gravitation and Cosmology | Year: 2014

We construct the quantum mechanical model of the Colella-Overhauser-Werner (COW) experiment assuming that the underlying space time has a granular structure, described by a canonical noncommutative algebra of coordinates xμ. The time-space sector of the algebra is shown to add a mass-dependent contribution to the gravitational acceleration felt by neutron de Brogli waves measured in a COW experiment. This makes time-space noncommutativity a potential candidate for an apparent violation of the weak equivalence principle even if the ratio of the inertial mass mi and gravitational mass mg is a universal constant. The latest experimental result based on the COW principle is shown to place an upper bound several orders of magnitude stronger than the existing one on the time-space noncommutative parameter. We argue that the evidence of noncommutative structure of space-time may be found if the COW-type experiment can be repeated with several particle species. © 2014 American Physical Society.


Saha A.,West Bengal State University
Physical Review D - Particles, Fields, Gravitation and Cosmology | Year: 2010

A thorough analysis of Galilean symmetries for the gravitational well problem on a noncommutative plane is presented. A complete closure of the one-parameter centrally extended Galilean algebra is realized for the model. This implies that the field theoretic model constructed to describe noncommutative gravitational quantum well in is indeed independent of the coordinate choice. Hence the energy spectrum predicted by the model can be associated with the experimental results to establish the upper bound on a time-space noncommutative parameter. Interestingly, noncommutativity is shown to increase the gravitational pull on the neutron trapped in the gravitational well. © 2010 The American Physical Society.


Sahu B.,West Bengal State University
Physics of Plasmas | Year: 2011

By using Sagdeev's pseudopotential technique, the problem of arbitrary amplitude ion acoustic solitary waves (IASWs) is discussed for a plasma comprising nonextensive electrons and thermal positrons. The standard normal-mode analysis is used to study the dispersion relation for linear waves. It is found that the present plasma model supports IASWs having positive as well as negative potential well. The influence of nonextensive electrons on the present plasma model is investigated for the existence of solitary waves. The investigation shows that the solitary structure ceases to exist when the parameter q crosses a certain limit. It is also found that both the small amplitude compressive and rarefactive double layer solution can exist in such a plasma system in some parametric region. It is shown that solitary structures and double layers are affected by nonextensivity, as well as by relevant plasma parameters. © 2011 American Institute of Physics.


Patent
Bose Institute and West Bengal State University | Date: 2013-09-27

A cancer chemotherapeutic agent that is particularly kinase suppressing and/or any other signaling pathway interfering agents and pharmaceutical formulations/compositions involving the same and its process of manufacture is provided. A potential the cancer chemotherapeutic agent is provided which apart from stated anticancer activity as a proven kinase suppressing and/or any other signaling pathway interfering agent could also involve specific potential binding affinity towards the intramolecular G-Quadruplex DNA structure and/or other potential quadruplex forming sequences over duplex DNA structures favours further diverse end use and application including but not limited to antiaging, antiangiogenic, antiproliferative, antitumor, antibiotic, antiviral, antifungal and multiple anticancer therapeutics, and also possesses favourable cytotoxicity values towards uncontrollably proliferative cells by inducing apoptosis irrespective of cells p53 status, without being cytotoxic to normal cells.

Loading West Bengal State University collaborators
Loading West Bengal State University collaborators