The Wellcome Trust Center for Cell Biology

Edinburgh, United Kingdom

The Wellcome Trust Center for Cell Biology

Edinburgh, United Kingdom

Time filter

Source Type

PubMed | The Wellcome Trust Center for Cell Biology
Type: Journal Article | Journal: The Journal of cell biology | Year: 2011

The nuclear envelope contains >100 transmembrane proteins that continuously exchange with the endoplasmic reticulum and move within the nuclear membranes. To better understand the organization and dynamics of this system, we compared the trafficking of 15 integral nuclear envelope proteins using FRAP. A surprising 30-fold range of mobilities was observed. The dynamic behavior of several of these proteins was also analyzed after depletion of ATP and/or Ran, two functions implicated in endoplasmic reticulum-inner nuclear membrane translocation. This revealed that ATP- and Ran-dependent translocation mechanisms are distinct and not used by all inner nuclear membrane proteins. The Ran-dependent mechanism requires the phenylalanine-glycine (FG)-nucleoporin Nup35, which is consistent with use of the nuclear pore complex peripheral channels. Intriguingly, the addition of FGs to membrane proteins reduces FRAP recovery times, and this also depends on Nup35. Modeling of three proteins that were unaffected by either ATP or Ran depletion indicates that the wide range in mobilities could be explained by differences in binding affinities in the inner nuclear membrane.


PubMed | The Wellcome Trust Center for Cell Biology
Type: Journal Article | Journal: Current biology : CB | Year: 2013

Cohesin is a conserved ring-shaped multiprotein complex that participates in chromosome segregation, DNA repair, and transcriptional regulation [1, 2]. Cohesin loading onto chromosomes universally requires the Scc2/4 loader complex (also called NippedBL/Mau2), mutations in which cause the developmental disorder Cornelia de Lange syndrome in humans [1-9]. Cohesin is most concentrated in the pericentromere, the region surrounding the centromere [10-15]. Enriched pericentromeric cohesin requires the Ctf19 kinetochore subcomplex in budding yeast [16-18]. Here, we uncover the spatial and temporal determinants for Scc2/4 centromere association. We demonstrate that the critical role of the Ctf19 complex is to enable Scc2/4 association with centromeres, through which cohesin loads and spreads onto the adjacent pericentromere. We show that, unexpectedly, Scc2 association with centromeres depends on cohesin itself. The absence of the Scc1/Mcd1/Rad21 cohesin subunit precludes Scc2 association with centromeres from anaphase until late G1. Expression of SCC1 is both necessary and sufficient for the binding of cohesin to its loader, the association of Scc2 with centromeres, and cohesin loading. We propose that cohesin triggers its own loading by enabling Scc2/4 to connect with chromosomal landmarks, which at centromeres are specified by the Ctf19 complex. Overall, our findings provide a paradigm for the spatial and temporal control of cohesin loading.

Loading The Wellcome Trust Center for Cell Biology collaborators
Loading The Wellcome Trust Center for Cell Biology collaborators