Entity

Time filter

Source Type


Li M.,Huazhong University of Science and Technology | Peng J.,Huazhong University of Science and Technology | Song Y.,Central Hospital of Weinan | Liang H.,Huazhong University of Science and Technology | And 2 more authors.
Journal of Huazhong University of Science and Technology - Medical Science | Year: 2012

This study examined the effect of electro-acupuncture (EA) combined with transcranial magnetic stimulation (TMS) therapy at different time windows on learning and memory ability of rats with cerebral infarction and the underlying mechanism. Two hundred SD rats were randomly divided into four groups: normal group, sham-operated group, model group and EA+TMS group, and each group was then divided into five sub-groups in terms of the different time to start treatment post operation: 6, 12, 24, 48 and 72 h. Cerebral infarction models were established in the model and the EA+TMS groups by left middle cerebral artery occlusion/reperfusion (MCAO/R). After treatment for 14 d, the Morris water maze test was applied to examine the spatial learning and memory abilities of rats. In infarcted area, the expression of caspase-3 was immunohistochemically detected, and real-time fluorescent quantitative PCR was used to measure the expression of Bcl-2 mRNA. The results showed that in EA+TMS group compared with model group at the same treatment time windows, the escape latency was substantially shortened, the expression of caspase-3 was considerably decreased and the expression level of Bcl-2 mRNA significantly increased (P<0.05). In the EA+TMS sub-groups, the escape latency was shortest, the expression level of caspase-3 lowest, and the expression level of Bcl-2 mRNA highest at the treatment time window of 24 h. It was concluded that EA combined with TMS can promote neurological function of rats with cerebral infarction by increasing the expression level of Bcl-2 mRNA and decreasing the expression of caspase-3. The best time window is 24 h after perfusion treatment to ischemia. © Huazhong University of Science and Technology and Springer-Verlag Berlin Heidelberg 2012. Source

Discover hidden collaborations