Weill Cornell Rockefeller Sloan Kettering Tri Institutional MD PhD Program

New York City, NY, United States

Weill Cornell Rockefeller Sloan Kettering Tri Institutional MD PhD Program

New York City, NY, United States
Time filter
Source Type

Xue Y.,Sloan Kettering Cancer Center | Xue Y.,Weill Cornell Rockefeller Sloan Kettering Tri Institutional MD PhD Program | Lito P.,Sloan Kettering Cancer Center
Clinical Cancer Research | Year: 2017

The ERK signaling pathway is one of the most commonly deregulated pathways in cancer. Assays that accurately measure ERK signaling output in clinical specimens would be extremely helpful not only in determining the pharmacodynamic effects of drug treatment but also in selecting those patients most likely to respond to therapy. © 2016 American Association for Cancer Research.

Williams T.J.,New York Medical College | Williams T.J.,Weill Cornell Rockefeller Sloan Kettering Tri Institutional MD PhD Program | Milner T.A.,New York Medical College | Milner T.A.,Rockefeller University
Neuroscience | Year: 2011

The hippocampal formation (HF) is an important site at which stress circuits and endogenous opioid systems intersect, likely playing a critical role in the interaction between stress and drug addiction. Prior study findings suggest that the stress-related neuropeptide corticotropin releasing factor (CRF) and the delta opioid receptor (DOR) may localize to similar neuronal populations within HF lamina. Here, hippocampal sections of male and cycling female adult Sprague-Dawley rats were processed for immunolabeling using antisera directed against the DOR and CRF peptide, as well as interneuron subtype markers somatostatin or parvalbumin, and analyzed by fluorescence and electron microscopy. Both DOR- and CRF-labeling was observed in interneurons in the CA1, CA3, and dentate hilus. Males and normal cycling females displayed a similar number of CRF immunoreactive neurons co-labeled with DOR and a similar average number of CRF-labeled neurons in the dentate hilus and stratum oriens of CA1 and CA3. In addition, 70% of DOR/CRF dual-labeled neurons in the hilar region co-labeled with somatostatin, suggesting a role for these interneurons in regulating perforant path input to dentate granule cells. Ultrastructural analysis of CRF-labeled axon terminals within the hilar region revealed that proestrus females have a similar number of CRF-labeled axon terminals that contain DORs compared to males but an increased number of CRF-labeled axon terminals without DORs. Taken together, these findings suggest that while DORs are anatomically positioned to modulate CRF immunoreactive interneuron activity and CRF peptide release, their ability to exert such regulatory activity may be compromised in females when estrogen levels are high. © 2011 IBRO.

Williams T.J.,New York Medical College | Williams T.J.,Weill Cornell Rockefeller Sloan Kettering Tri Institutional MD PhD Program | Akama K.T.,Rockefeller University | Knudsen M.G.,New York Medical College | And 3 more authors.
Experimental Neurology | Year: 2011

Stress interacts with addictive processes to increase drug use, drug seeking, and relapse. The hippocampal formation (HF) is an important site at which stress circuits and endogenous opioid systems intersect and likely plays a critical role in the interaction between stress and drug addiction. Our prior studies demonstrate that the stress-related neuropeptide corticotropin-releasing factor (CRF) and the delta-opioid receptor (DOR) colocalize in interneuron populations in the hilus of the dentate gyrus and stratum oriens of CA1 and CA3. While independent ultrastructural studies of DORs and CRF receptors suggest that each receptor is found in CA1 pyramidal cell dendrites and dendritic spines, whether DORs and CRF receptors colocalize in CA1 neuronal profiles has not been investigated. Here, hippocampal sections of adult male and proestrus female Sprague-Dawley rats were processed for dual label pre-embedding immunoelectron microscopy using well-characterized antisera directed against the DOR for immunoperoxidase and against the CRF receptor for immunogold. DOR-immunoreactivity (-ir) was found presynaptically in axons and axon terminals as well as postsynaptically in somata, dendrites and dendritic spines in stratum radiatum of CA1. In contrast, CRF receptor-ir was predominantly found postsynaptically in CA1 somata, dendrites, and dendritic spines. CRF receptor-ir frequently was observed in DOR-labeled dendritic profiles and primarily was found in the cytoplasm rather than at or near the plasma membrane. Quantitative analysis of CRF receptor-ir colocalization with DOR-ir in pyramidal cell dendrites revealed that proestrus females and males show comparable levels of CRF receptor-ir per dendrite and similar cytoplasmic density of CRF receptor-ir. In contrast, proestrus females display an increased number of dual-labeled dendritic profiles and an increased membrane density of CRF receptor-ir in comparison to males. We further examined the functional consequences of CRF receptor-ir colocalization with DOR-ir in the same neuron using the hormone responsive neuronal cell line NG108-15, which endogenously expresses DORs, and assayed intracellular cAMP production in response to CRF receptor and DOR agonists. Results demonstrated that short-term application of DOR agonist SNC80 inhibited CRF-induced cAMP accumulation in NG108-15 cells transfected with the CRF receptor. These studies provide new insights on opioid-stress system interaction in the hippocampus of both males and females and establish potential mechanisms through which DOR activation may influence CRF receptor activity. © 2011 Elsevier Inc.

Williams T.J.,New York Medical College | Williams T.J.,Weill Cornell Rockefeller Sloan Kettering Tri Institutional MD PhD Program | Torres-Reveron A.,New York Medical College | Torres-Reveron A.,Nova Southeastern University | And 3 more authors.
Neurobiology of Learning and Memory | Year: 2011

Clinical and preclinical studies indicate that women and men differ in relapse vulnerability to drug-seeking behavior during abstinence periods. As relapse is frequently triggered by exposure of the recovered addict to objects previously associated with drug use and the formation of these associations requires memory systems engaged by the hippocampal formation (HF), studies exploring ovarian hormone modulation of hippocampal function are warranted. Previous studies revealed that ovarian steroids alter endogenous opioid peptide levels and trafficking of mu opioid receptors in the HF, suggesting cooperative interaction between opioids and estrogens in modulating hippocampal excitability. However, whether ovarian steroids affect the levels or trafficking of delta opioid receptors (DORs) in the HF is unknown. Here, hippocampal sections of adult male and normal cycling female Sprague-Dawley rats were processed for quantitative immunoperoxidase light microscopy and dual label fluorescence or immunoelectron microscopy using antisera directed against the DOR and neuropeptide Y (NPY). Consistent with previous studies in males, DOR-immunoreactivity (-ir) localized to select interneurons and principal cells in the female HF. In comparison to males, females, regardless of estrous cycle phase, show reduced DOR-ir in the granule cell layer of the dentate gyrus and proestrus (high estrogen) females, in particular, display reduced DOR-ir in the CA1 pyramidal cell layer. Ultrastructural analysis of DOR-labeled profiles in CA1 revealed that while females generally show fewer DORs in the distal apical dendrites of pyramidal cells, proestrus females, in particular, exhibit DOR internalization and trafficking towards the soma. Dual label studies revealed that DORs are found in NPY-labeled interneurons in the hilus, CA3, and CA1. While DOR colocalization frequency in NPY-labeled neuron somata was similar between animals in the hilus, proestrus females had fewer NPY-labeled neurons that co-labeled with DOR in stratum oriens of CA1 and CA3 when compared to males. Ultrastructural analysis of NPY-labeled axon terminals within stratum radiatum of CA1 revealed that NPY-labeled axon terminals contain DORs that are frequently found at or near the plasma membrane. As no differences were noted by sex or estrous cycle phase, DOR activation on NPY-labeled axon terminals would inhibit GABA release probability equally in males and females. Taken together, these findings suggest that ovarian steroids can impact hippocampal function through direct effects on DOR levels and trafficking in principal cells and broad indirect effects through reductions in DOR-ir in NPY-labeled interneurons, particularly in CA1. © 2011 Elsevier Inc.

Oricchio E.,Sloan Kettering Cancer Center | Nanjangud G.,Sloan Kettering Cancer Center | Nanjangud G.,226 Rehab Center | Wolfe A.L.,Sloan Kettering Cancer Center | And 18 more authors.
Cell | Year: 2011

Insights into cancer genetics can lead to therapeutic opportunities. By cross-referencing chromosomal changes with an unbiased genetic screen we identify the ephrin receptor A7 (EPHA7) as a tumor suppressor in follicular lymphoma (FL). EPHA7 is a target of 6q deletions and inactivated in 72% of FLs. Knockdown of EPHA7 drives lymphoma development in a murine FL model. In analogy to its physiological function in brain development, a soluble splice variant of EPHA7 (EPHA7 TR) interferes with another Eph-receptor and blocks oncogenic signals in lymphoma cells. Consistent with this drug-like activity, administration of the purified EPHA7 TR protein produces antitumor effects against xenografted human lymphomas. Further, by fusing EPHA7 TR to the anti-CD20 antibody (rituximab) we can directly target this tumor suppressor to lymphomas in vivo. Our study attests to the power of combining descriptive tumor genomics with functional screens and reveals EPHA7 TR as tumor suppressor with immediate therapeutic potential. © 2011 Elsevier Inc.

Dow L.E.,Sloan Kettering Cancer Center | Dow L.E.,New York Medical College | Fisher J.,Sloan Kettering Cancer Center | O'Rourke K.P.,Sloan Kettering Cancer Center | And 7 more authors.
Nature Biotechnology | Year: 2015

CRISPR-Cas9-based genome editing enables the rapid genetic manipulation of any genomic locus without the need for gene targeting by homologous recombination. Here we describe a conditional transgenic approach that allows temporal control of CRISPR-Cas9 activity for inducible genome editing in adult mice. We show that doxycycline-regulated Cas9 induction enables widespread gene disruption in multiple tissues and that limiting the duration of Cas9 expression or using a Cas9D10A (Cas9n) variant can regulate the frequency and size of target gene modifications, respectively. Further, we show that this inducible CRISPR (iCRISPR) system can be used effectively to create biallelic mutation in multiple target loci and, thus, provides a flexible and fast platform to study loss-of-function phenotypes in vivo.

Dow L.E.,Sloan Kettering Cancer Center | Dow L.E.,New York Medical College | O'Rourke K.P.,Sloan Kettering Cancer Center | O'Rourke K.P.,Weill Cornell Rockefeller Sloan Kettering Tri Institutional MD PhD Program | And 6 more authors.
Cell | Year: 2015

The adenomatous polyposis coli (APC) tumor suppressor is mutated in the vast majority of human colorectal cancers (CRC) and leads to deregulated Wnt signaling. To determine whether Apc disruption is required for tumor maintenance, we developed a mouse model of CRC whereby Apc can be conditionally suppressed using a doxycycline-regulated shRNA. Apc suppression produces adenomas in both the small intestine and colon that, in the presence of Kras and p53 mutations, can progress to invasive carcinoma. In established tumors, Apc restoration drives rapid and widespread tumor-cell differentiation and sustained regression without relapse. Tumor regression is accompanied by the re-establishment of normal crypt-villus homeostasis, such that once aberrantly proliferating cells reacquire self-renewal and multi-lineage differentiation capability. Our study reveals that CRC cells can revert to functioning normal cells given appropriate signals and provide compelling in vivo validation of the Wnt pathway as a therapeutic target for treatment of CRC. © 2015 Elsevier Inc.

Roy D.M.,Sloan Kettering Cancer Center | Roy D.M.,Weill Cornell Rockefeller Sloan Kettering Tri Institutional MD PhD Program | Walsh L.A.,Sloan Kettering Cancer Center | Chan T.A.,Sloan Kettering Cancer Center
Protein and Cell | Year: 2014

Epigenetic alterations are associated with all aspects of cancer, from tumor initiation to cancer progression and metastasis. It is now well understood that both losses and gains of DNA methylation as well as altered chromatin organization contribute significantly to cancer-associated phenotypes. More recently, new sequencing technologies have allowed the identification of driver mutations in epigenetic regulators, providing a mechanistic link between the cancer epigenome and genetic alterations. Oncogenic activating mutations are now known to occur in a number of epigenetic modifiers (i.e. IDH1/2, EZH2, DNMT3A), pinpointing epigenetic pathways that are involved in tumorigenesis. Similarly, investigations into the role of inactivating mutations in chromatin modifiers (i.e. KDM6A, CREBBP/EP300, SMARCB1) implicate many of these genes as tumor suppressors. Intriguingly, a number of neoplasms are defined by a plethora of mutations in epigenetic regulators, including renal, bladder, and adenoid cystic carcinomas. Particularly striking is the discovery of frequent histone H3.3 mutations in pediatric glioma, a particularly aggressive neoplasm that has long remained poorly understood. Cancer epigenetics is a relatively new, promising frontier with much potential for improving cancer outcomes. Already, therapies such as 5-azacytidine and decitabine have proven that targeting epigenetic alterations in cancer can lead to tangible benefits. Understanding how genetic alterations give rise to the cancer epigenome will offer new possibilities for developing better prognostic and therapeutic strategies. © 2014 The Author(s).

Chinenov Y.,Hospital for Special Surgery | Coppo M.,Hospital for Special Surgery | Gupte R.,Cell and Molecular Biology | Sacta M.A.,Weill Cornell Rockefeller Sloan Kettering Tri Institutional MD PhD Program | Rogatsky I.,Hospital for Special Surgery
BMC Genomics | Year: 2014

Background: Inflammation triggered by infection or injury is tightly controlled by glucocorticoid hormones which signal via a dedicated transcription factor, the Glucocorticoid Receptor (GR), to regulate hundreds of genes. However, the hierarchy of transcriptional responses to GR activation and the molecular basis of their oftentimes non-linear dynamics are not understood. Results: We investigated early glucocorticoid-driven transcriptional events in macrophages, a cell type highly responsive to both pro- and anti-inflammatory stimuli. Using whole transcriptome analyses in resting and acutely lipopolysaccharide (LPS)-stimulated macrophages, we show that early GR target genes form dense networks with the majority of control nodes represented by transcription factors. The expression dynamics of several glucocorticoid-responsive genes are consistent with feed forward loops (FFL) and coincide with rapid GR recruitment. Notably, GR binding sites in genes encoding members of the KLF transcription factor family colocalize with KLF binding sites. Moreover, our gene expression, transcription factor binding and computational data are consistent with the existence of the GR-KLF9-KLF2 incoherent FFL. Analysis of LPS-downregulated genes revealed striking enrichment in multimerized Zn-fingers- and KRAB domain-containing proteins known to bind nucleic acids and repress transcription by propagating heterochromatin. This raises an intriguing possibility that an increase in chromatin accessibility in inflammatory macrophages results from broad downregulation of negative chromatin remodelers. Conclusions: Pro- and anti-inflammatory stimuli alter the expression of a vast array of transcription factors and chromatin remodelers. By regulating multiple transcription factors, which propagate the initial hormonal signal, GR acts as a coordinating hub in anti-inflammatory responses. As several KLFs promote the anti-inflammatory program in macrophages, we propose that GR and KLFs functionally cooperate to curb inflammation. © 2014 Chinenov et al.; licensee BioMed Central Ltd.

Huang Y.-H.,Weill Cornell Rockefeller Sloan Kettering Tri Institutional MD PhD Program
Journal of Religion and Health | Year: 2013

The proliferation of patents on human genes has raised important ethical questions centered on the conflict of patient rights and intellectual property rights. With the Supreme Court's June 2013 decision that altered the patent eligibility of genetic material, it is important to reexamine the ethical implications of gene patents as a concept. Such patents suggest an ownership of genetic material that may hinder access to healthcare and inhibit medical progress. The application of the current patent system to genetic material thus violates patients' rights without fulfilling the system's goal of promoting innovation, suggesting a need for a revised incentives infrastructure. © 2013 Springer Science+Business Media New York.

Loading Weill Cornell Rockefeller Sloan Kettering Tri Institutional MD PhD Program collaborators
Loading Weill Cornell Rockefeller Sloan Kettering Tri Institutional MD PhD Program collaborators