Cupertino, CA, United States
Cupertino, CA, United States

D-Wave Systems, Inc. is a quantum computing company, based in Burnaby, British Columbia, Canada. On May 11, 2011, D-Wave Systems announced D-Wave One, described as "the world's first commercially available quantum computer," operating on a 128-qubit chipset using quantum annealing to solve optimization problems. In May 2013 it was announced that a collaboration between NASA, Google and the Universities Space Research Association launched a Quantum Artificial Intelligence Lab based on the D-Wave Two 512-qubit quantum computer that would be used for research into machine learning, among other fields of study.The D-Wave One was built on early prototypes such as D-Wave's Orion Quantum Computer.The prototype was a 16-qubit quantum annealing processor, demonstrated on February 13, 2007 at the Computer History Museum in Mountain View, California. D-Wave demonstrated what they claimed to be a 28-qubit quantum annealing processor on November 12, 2007. The chip was fabricated at the NASA Jet Propulsion Laboratory microdevices lab in Pasadena, California. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Systems and methods may be provided for masking data on public networks. At a publishing node, the system may monitor data input fields in a webpage, and intercept and encode content, such as text, images, and video input at the data input fields, prior to the content being posted online on a public service providers website. A policy may be defined to control which users are permitted access to a key to decode the encoded content. The policy may defer to a third party policy node in determining key access. An account for a controlling entity, such as a guardian or employer, may be configured to control the encoding status of posts made by another. The controlling entity may control who has key access to decode posts made by the other account. The guardian account may be configured to have preemptive rights over posting decisions made by the minor.


The invention relates to a compressor device, to a cooling device equipped therewith, and to a method for operating the compressor device. Pulse tube coolers or Gifford-McMahon coolers are used to cool nuclear spin tomographs, cryopumps, etc. In this connection, gas compressor and in particular helium compressors are used in combination with rotational or rotary valves. The rate at which compressed helium is introduced into the cooling device and led out again lies in the range of 1 Hz. A problem of traditional screw or piston processors is that oil from the compressor can enter the working gas and thus the cooling apparatus and contaminate the cooling apparatus. As a result of providing a second compressor stage, the common pumping apparatus is used doubly and a two-stage compressor device is specified. The working gas is compressed in each flow direction of the working-medium liquid; in the one flow direction in the first compressor stage and in the opposite flow direction in the second compressor stage. Thus, the efficiency of the compressor device is increased.


Patent
Wave Systems | Date: 2015-05-12

Data may be masked on public networks, such as social networking sites. At a publishing node, the system may monitor data input fields in a webpage that are processed by an internet browser. The system may intercept data, such as text, images, and video input at the data input fields, prior to the data being posted online. The publishing node may control which users are permitted access to the posted data by defining a policy associated with the data input field. The posted data may be transformed or tokenized to ensure that it is inaccessible to a user (or group of users) unless that user/group has access to the decoding key under the policy. In this way, data security and data control may be provided to a publishing user node. Data that has already been posted may be destroyed, for example, by deleting the decryption key or a token.


Patent
Wave Systems | Date: 2017-03-06

Pulse tube coolers and Gifford-McMahon coolers are used to cool nuclear spin tomographs and cryopumps. To supply cooled working gas, gas compressors and in particular helium compressors are used with rotational or rotary valves. The rate at which compressed helium is introduced into the cooling device and let out again lies in the range of 1 Hz. A problem of conventional screw or piston processors is that oil from the compressor mixes with the working gas and thus contaminates the cooling device. By providing a second compressor stage, a common pump device can be used to pump in both directions, which results in a two-stage compressor device. The working gas is compressed in each flow direction of the working liquid, in one flow direction in the first compressor stage and in the opposite flow direction in the second compressor stage. Thus, the efficiency of the compressor device is improved.


Patent
Wave Systems | Date: 2014-01-30

A compressor device that periodically supplies compressed working gas to a cooling device loses less of the gas by not using rotary valves. The compressor device includes a compressor cylinder, a compensation container and a drive device with an hydraulic cylinder. The compressor cylinder includes a compressor element, such as a piston or membrane, that divides the compressor cylinder into first and second volumes. The first volume contains the gas that is compressed by the compressor element. The hydraulic cylinder has a piston that is coupled to the compressor element. The compensation container contains compensation fluid and is directly connected to the second volume. The compensation container is also connected to the first volume by a gas line with a non-return valve that opens in the direction of the first volume. The drive device allows the compressed gas to be provided at a frequency required for Gifford-McMahon and pulse-tube coolers.


Patent
Wave Systems | Date: 2015-01-21

A compressor device that periodically supplies compressed working gas to a cooling device loses less gas by not using a rotary valve. The compressor device includes a compressor chamber, a working gas connection, a working liquid connection, a pump, a compensation container and a membrane that is airtight and liquid-tight. The membrane divides the compressor chamber into a first volume containing a working gas and a second volume containing a working liquid. The working gas connection is coupled to the first volume, and the working liquid connection is coupled to the second volume. The pump periodically pumps the working liquid through the working liquid connection and into the second volume and as a result periodically compresses the working gas in the first volume. The membrane is constructed as a balloon or a bellows that surrounds the first volume. The compensation container contains working liquid and is connected to the pump.


Patent
Wave Systems | Date: 2016-04-08

Device identification scoring systems and methods may be provided that can increase the reliability and security of communications between devices and service providers. Users may select and configure additional identification factors that are unique and convenient for them. These factors, along with additional environmental variables, feed into a trust score computation that weights the trustworthiness of the device context requesting communication with a service provider. Service providers rely on the trust score rather than enforce a specific identification routine themselves. A combination of identification factors selected by the user can be aggregated together to produce a trust score high enough to gain access to a given online service provider. A threshold of identification risk may be required to access a service or account provided by the online service provider.


There is described a method for continuous online monitoring of a pulsating pump. A first step involves monitoring discharge pressure patterns caused by each stroke of the pulsating pump. A second step involves using a computer processing unit to analyse each pressure spike in the discharge pressure patterns and arrive at derived calculations for stroke length, stroke frequency and flow rate. A width of the base of the pressure spike is indicative of pump stroke frequency and an area of the pressure spike being indicative of fluid pumped per stroke. The pumps stroke length and the pump flow rate is fluid pumped per stroke multiplied by stroke frequency.


Patent
Wave Systems | Date: 2013-10-30

Device identification scoring systems and methods may be provided that can increase the reliability and security of communications between devices and service providers. Users may select and configure additional identification factors that are unique and convenient for them. These factors, along with additional environmental variables, feed into a trust score computation that weights the trustworthiness of the device context requesting communication with a service provider. Service providers rely on the trust score rather than enforce a specific identification routine themselves. A combination of identification factors selected by the user can be aggregated together to produce a trust score high enough to gain access to a given online service provider. A threshold of identification risk may be required to access a service or account provided by the online service provider.


Grant
Agency: European Commission | Branch: H2020 | Program: SME-2 | Phase: IT-1-2014 | Award Amount: 1.97M | Year: 2015

At NEEL we have developed an absolute novelty on a world scale: UOZ-1 animal deterring system that successfully prevents the animal-train collisions. The device exploits an animal natural sensitivity to sound and just before a train approach, at the time of the danger, a series of sounds stimulates animal instinct and enforces their life defensive reflex reaction in the form of escape. Our UOZ-1 animal deterring devise has been created in response to the particular need of preventing collisions of wild animals with trains in areas where the migration routes of animals cross the railway lines. The primary objective of the SafeTrain Project is to pilot and test in real environment the autonomous system for the automatic train detection that will be integrated with our UOZ-2 animal deterring device. The new train location system will be based on an intelligent mechanism of listening for an approaching train commercially known as an Indian ear. Our goal is to incorporate it into the animal deterring system in order to make it independent from the currently used rail signalling system. This will not only reduce the complexity of the whole system but also will reduce the investment and maintenance costs down to 60% of the todays costs. The secondary, but not less important goal is the development of green powering system for UOZ-2 utilising renewable energy sources to make the system energetically self-sustained. This will be of particular importance in areas where the rail track has not been electrified and thus with limited access to grid power. Our acoustic method for train-animal collisions prevention is an excellent solution that allows preservation of ecological corridors and animal migration routes and significantly reduces the safety and business risk of rail carriers. It overcomes all limitations of the state-of the-art solutions available on the market, and looking at Europe only, opens the way to the market worth of nearly 125m.

Loading Wave Systems collaborators
Loading Wave Systems collaborators