Entity

Time filter

Source Type


Rania A.B.A.,University of Carthage | Rania A.B.A.,University of Sousse | Jabnoun-Khiareddine H.,University of Sousse | Nefzi A.,University of Sousse | And 4 more authors.
Biocontrol Science and Technology | Year: 2016

Nine non-pathogenic bacterial isolates, recovered from Datura metel organs and able to colonise the internal stem tissues of tomato cultivar Rio Grande, were screened for their ability to suppress tomato Fusarium wilt disease caused by Fusarium oxysporum f. sp. lycopersici (FOL), and to enhance plant growth. S33 and S85 isolates tested were found to be the most effective in decreasing Fusarium wilt severity by 94–95% compared to FOL-inoculated and untreated control. A significant enhancement of growth parameters was recorded on tomato plants inoculated or not with FOL. Both isolates were characterised and identified using 16S rDNA sequencing genes as Stenotrophomonas sp. str. S33 (KR818084) and Pseudomonas sp. str. S85 (KR818087). Screened in vitro for their antifungal activity towards FOL, these isolates led to 38.7% and 22.5% decrease in pathogen radial growth and to the formation of an inhibition zone of 12.75 and 8.37 mm respectively. Stenotrophomonas sp. str. S33 and Pseudomonas sp. str. S85 were found to be chitinase-, protease- and pectinase-producing strains but unable to produce hydrogen cyanide. Production of indole-3-acetic acid-like compounds, phosphate solubilising ability and pectinase activity were investigated for elucidating their plant growth-promoting traits and their endophytic colonisation ability. © 2016 Informa UK Limited, trading as Taylor & Francis Group. Source


Aydi Ben Abdallah R.,University of Carthage | Aydi Ben Abdallah R.,University of Sousse | Nefzi A.,University of Sousse | Nefzi A.,University of Carthage | And 7 more authors.
Archives of Phytopathology and Plant Protection | Year: 2016

A putative endophytic Bacillus cereus str. S42 (KP993206), recovered from surface-sterilised stems of Nicotiana glauca was assessed in vitro and in vivo for its antifungal potential towards Fusarium oxysporum f. sp. lycopersici (FOL). Pathogen sporulation was significantly inhibited by B. cereus str. S42. FOL mycelial growth was reduced using its whole-cell suspensions, cell-free culture supernatant and chloroform extract. Its extracellular metabolites remained effective after heating at 50–100 °C with a decline in their activity was observed beyond 100 °C, when added with proteinase K and/or after pH adjustment to 2 and 12. Chitinase gene was detected using PCR amplification. Gas chromatography–mass spectrometry analysis of its chloroform extract matched phthalic acid, dibutyl ester with high level of similarity. B. cereus str. S42 cell-free culture supernatant and whole-cell suspensions had significantly suppressed Fusarium wilt severity by 87–96% and enhanced tomato growth by 39–79% compared to FOL-inoculated and untreated control. © 2016 Informa UK Limited, trading as Taylor & Francis Group Source

Discover hidden collaborations