Los Angeles, CA, United States
Los Angeles, CA, United States

Time filter

Source Type

Jian C.,University of Alberta | Tang T.,University of Alberta | Bhattacharjee S.,University of Alberta | Bhattacharjee S.,Water Planet
Energy and Fuels | Year: 2014

In order to investigate the aggregation mechanisms of asphaltenes in toluene, a series of molecular dynamics simulations were performed on Violanthrone78-based model asphaltenes with different aliphatic/aromatic ratios. Our simulation results show that the attraction between poly-aromatic cores is the main driving force for asphaltene aggregation in toluene, and that the extent of aggregation is independent of the aliphatic/aromatic ratios. On the other hand, analysis of the aggregated structures indicates that long side chains do hinder the formation of large direct parallel stacking structures. In contrast with water as a solvent, toluene exhibits attractive interactions with both the aliphatic and aromatic regions of the asphaltenes, hence reducing the size and stability of the asphaltene aggregates. Our findings help to elucidate, at a molecular level, the different solubility behaviors of asphaltenes in toluene and in water. © 2014 American Chemical Society.


Grant
Agency: NSF | Branch: Standard Grant | Program: | Phase: SMALL BUSINESS PHASE I | Award Amount: 148.90K | Year: 2016

The broader impact/commercial potential of this Small Business Innovation Research Phase I project is that it delivers a novel polymeric membrane filtration material that is resistant to fouling by sticky organic matter present in wastewaters treated in membrane bioreactors (MBRs). Membrane fouling is a leading problem encountered in MBR systems, and is poorly served by incumbent technologies. Filtration membranes made from the proposed engineered polymer material could be significantly more fouling resistant, easily cleanable, and display enhanced chemical resilience compared to conventional polymeric membranes used in commercially available MBRs. The global MBR applications market is at its early growth phase, with no clear dominant technology and market leader. The proposed membrane technology will be highly differentiated and is expected to substantially improve the economics and reliability of MBRs.

The technical objectives of this Phase I research project are to develop a flat sheet membrane with (1) high water permeability, (2) hydrophilic and super-oleophobic surface properties, (3) high mechanical/thermal/acid/base resistance, and (4) high oxidant resistance. Membranes with high water permeability require lower operating pressures (lower energy requirements). Membranes that are extremely hydrophilic are more fouling resistant, and membranes that are highly oleophobic are more oil-tolerant. Mechanical, thermal, and chemical (acid, base, chlorine) tolerance are critical for enabling aggressive membrane cleaning. The oxidant tolerance is specifically desired to render the membranes functional in high purity oxygen membrane bioreactors (HPO-MBR), where high organic loading is maintained in persistently higher oxidation potential (high dissolved oxygen) media. Thus, polymeric membranes with better long-term oxidant resistance could exhibit longer lifetimes, and lower cleaning frequencies and downtime in an HPO-MBR process. This project aims to molecularly design the side chain functionality of the backbone polymer entity to create such an oxidation tolerant membrane. A polymeric membrane with these specifications has never been made, but would be very attractive to customers that need to treat wastewater with high chemical oxygen demand (COD) in advanced MBR processes.


Trademark
Water Planet | Date: 2014-07-11

Drinking water.


Trademark
Water Planet and H2One LLC | Date: 2015-02-06

reusable plastic or glass beverage bottles sold empty.


Trademark
Water Planet | Date: 2014-08-01

Water filtration and purification units and replacement cartridges and filters therefor; Water filtration apparatus for the deionization of water; Water purification and filtration apparatus; Water treatment equipment, namely, reverse osmosis filtration units; Water treatment equipment, namely, water filtration units; Water treatment equipment, namely, water filtration units and reverse osmosis units; none of the foregoing for use with pools, spas, waterparks, fountains, or ponds, or in aquaculture. Rental of water filtration units for commercial use excluding water filtration units for pools, spas, waterparks, fountains, and ponds, and for aquaculture.


Patent
Water Planet | Date: 2015-08-12

A filtration system can comprise a pressure pump configured to apply a pressure on fluid flowing between a first chamber and a second chamber. The filtration system can also comprise a flow sensor configured to determine at least one parameter associated with fluid flowing across a membrane deposited between the first chamber and a second chamber. The filtration system can comprise a pressure sensor configured to determine pressure readings of the fluid flowing from the first chamber to the second chamber. The filtration system can comprise a filtration management system configured to cause the pressure pump to apply a constant pressure on fluid flowing across the membrane for a first predetermined time based on the pressure reading. The filtration management system can be configured to cause the pressure pump to reverse the fluid flow across the membrane based on the at least one parameter for a second predetermined time.


A system for the separation of the components of an oil, water, and solids mixture, the system comprising a mechanical separation module comprising an oily water output and an input adapted to receive an oil, water, and solids mixture; and a membrane separation module comprising an oily water input and a recirculation output. The oily water output of the mechanical separation module is in flow communication with the oily water input of the membrane separation module, and the recirculation output of the membrane separation module is in flow communication with the input of the mechanical separation module.


Grant
Agency: National Science Foundation | Branch: | Program: SBIR | Phase: Phase I | Award Amount: 148.90K | Year: 2016

The broader impact/commercial potential of this Small Business Innovation Research Phase I project is that it delivers a novel polymeric membrane filtration material that is resistant to fouling by sticky organic matter present in wastewaters treated in membrane bioreactors (MBRs). Membrane fouling is a leading problem encountered in MBR systems, and is poorly served by incumbent technologies. Filtration membranes made from the proposed engineered polymer material could be significantly more fouling resistant, easily cleanable, and display enhanced chemical resilience compared to conventional polymeric membranes used in commercially available MBRs. The global MBR applications market is at its early growth phase, with no clear dominant technology and market leader. The proposed membrane technology will be highly differentiated and is expected to substantially improve the economics and reliability of MBRs. The technical objectives of this Phase I research project are to develop a flat sheet membrane with (1) high water permeability, (2) hydrophilic and super-oleophobic surface properties, (3) high mechanical/thermal/acid/base resistance, and (4) high oxidant resistance. Membranes with high water permeability require lower operating pressures (lower energy requirements). Membranes that are extremely hydrophilic are more fouling resistant, and membranes that are highly oleophobic are more oil-tolerant. Mechanical, thermal, and chemical (acid, base, chlorine) tolerance are critical for enabling aggressive membrane cleaning. The oxidant tolerance is specifically desired to render the membranes functional in high purity oxygen membrane bioreactors (HPO-MBR), where high organic loading is maintained in persistently higher oxidation potential (high dissolved oxygen) media. Thus, polymeric membranes with better long-term oxidant resistance could exhibit longer lifetimes, and lower cleaning frequencies and downtime in an HPO-MBR process. This project aims to molecularly design the side chain functionality of the backbone polymer entity to create such an oxidation tolerant membrane. A polymeric membrane with these specifications has never been made, but would be very attractive to customers that need to treat wastewater with high chemical oxygen demand (COD) in advanced MBR processes.


Trademark
Water Planet | Date: 2016-10-26

Water treatment equipment, namely, cartridge filtration units.


Loading Water Planet collaborators
Loading Water Planet collaborators