Pullman, WA, United States
Pullman, WA, United States

Washington State University is a public research university based in Pullman, Washington, in the Palouse region of the northwest United States.Founded 125 years ago in 1890, WSU is the state's only land-grant university. The university is well known for its programs in chemical engineering, veterinary medicine, agriculture, animal science, food science, plant science, architecture, neuroscience and communications. It is one of 96 public and private universities in America with "very high research activity," as determined by the Carnegie Foundation for the Advancement of Teaching. With an undergraduate enrollment of 25,092 and a total student enrollment of 27,642, it is the second largest institution of higher education in Washington state.The university also operates campuses across Washington known as WSU Spokane, WSU Tri-Cities, and WSU Vancouver, all founded in 1989. In 2012, WSU launched an Internet-based Global Campus, which includes its online degree program, WSU Online. These campuses award primarily bachelor's and master's degrees. Freshmen and sophomores were first admitted to the Vancouver campus in 2006 and to the Tri-Cities campus in 2007. Total enrollment for the four campuses and WSU Online exceeds 25,900 students. In 2009, this included a record 1,447 international students, the highest since 1994 when there were 1,442.WSU's athletic teams are called the Cougars and the school colors are crimson and gray. The six men's and nine women's varsity teams compete in NCAA Division I in the Pacific-12 Conference. Wikipedia.


Time filter

Source Type

Patent
Washington State University | Date: 2016-11-01

A novel bio-based superabsorbent polymer material based on a proteinaceous natural polymer is introduced herein. There is further disclosed a method for the manufacture of such a bio-based crosslinked superabsorbent polymer material. The method includes, but not limited to, introducing polymerizable unsaturated groups onto the natural polymer or its derivative so as to yield a macromonomer. The macromonomer can be formed by covalently binding unsaturated carbon-carbon double bonds to a proteinaceous substrate through a reaction of a selected chemical compound and the amino group on the proteinaceous substrate. The macromonomer is then copolymerized with unsaturated co-monomer(s) to form a crosslinked superabsorbent material.


Patent
Washington State University | Date: 2016-08-13

Various embodiments of surface-modified devices, components, and associated methods of manufacturing are described herein. In one embodiment, an implantable device suitable for being implanted in a patient includes an implantable material having a utile shape and a surface and a modification material deposited on at least a portion of the surface of the implantable material. The modification material has a release rate in an implantation environment in the patient. The modification material at the release rate is effective as bactericidal without being cytotoxic to the patient


Patent
Washington State University | Date: 2016-09-19

Microcin MccPDI and bacteria harboring the mcpM gene which encodes MccPDI limit growth of and/or kill pathogenic bacteria such as pathogenic Escherichia coli (E. coli) and/or Shigella bacteria via proximity-dependent inhibition (PDI).


Patent
Washington State University | Date: 2016-07-30

Techniques to improve efficiencies of power amplifiers in wireless communication devices are described herein. In one embodiment, an envelope tracking supply modulator includes a pre-amplifier having an input coupled to an envelope signal and another input coupled to a threshold voltage signal, a de-multiplexer coupled to an output of the pre-amplifier, a pulse frequency modulator having an input coupled to an output of the de-multiplexer, and a pulse width modulator having an input coupled to the output of the de-multiplexer. The de-multiplexer is configured to allow the pulse frequency modulator to modulate a switching frequency to generate a switched signal according to a slew rate of the envelope signal or allow the pulse width modulator to provide the switched signal as a current source with a constant frequency, based on a comparison result between the envelope signal and the threshold voltage signal at the pre-amplifier.


The methods herein provide for analysis of ion populations. Certain aspects include: obtaining a first data set that includes: a first binary On-OFF frequency sweep across a range of frequencies resulting in a first raw data in the time domain and obtaining a second data set that includes: a second binary On-OFF frequency sweep 180 out of phase from the first binary On-OFF frequency sweep so as to result in a second raw data in the time domain from received ion current resulting from the second binary On-OFF frequency sweep. Thereafter the two data sets are combined to provide for raw mobility signals of the ion populations in the time domain for each m/z over a range of selected m/z values. Additional aspects include a hybrid system for performing the methods disclosed herein.


A two-step (sequential) machine learning analysis tool is provided that involves a combination of an initial active learning step followed by an imbalance class learner (ACL-ICL) protocol. This technique provides a more tightly integrated approach for a more efficient and accurate machine learning analysis. The combination of ACL and ICL work synergistically to improve the accuracy and efficiency of machine learning and can be used with any type of dataset including biological datasets.


Patent
Washington State University | Date: 2016-10-06

Unique methods and systems are introduced herein that is directed to a new class of Scanning Tunneling Microscope(s) (STM) for Solid Solution (SS) interface studies in which all mechanical components of the STM system are contained in a controlled-temperature and controlled-atmosphere chamber. This new design allows a user to do temperature dependent studies at the SS interface with non-conducting volatile solvents.


Patent
Washington State University | Date: 2016-12-19

Robotic systems and specialized end-effectors provide for automated harvesting of produce such as fresh market apples. An underactuated design using tendons and flexure joints with passive compliance increases robustness to position error, overcoming a significant limitation of previous fruit harvesting end-effectors. Some devices use open-loop control, provide a shape-adaptive grasp, and produce contact forces similar to those used during optimal hand picking patterns. Other benefits include relatively low weight, low cost, and simplicity.


Patent
Washington State University | Date: 2015-06-12

A novel method and mass spectrometer apparatus is introduced to enable collision induced dissociation inside linear ion traps/guides or 3D ion traps based on digital waveform manipulation. In particular, using the devices digitally produced trapping waveforms to trap, isolate and energize the ions of interest creates a simplified and versatile ion trap/guide that is capable tandem mass spectrometry and high sensitivity. Coupling the digitally operated ion trap/guides to a TOF creates a Q-TOF instrument that outperforms any commercial system in terms of sensitivity and capabilities.


Patent
Washington State University, University of Maryland College Park and University of Edinburgh | Date: 2017-05-24

The present invention provides livestock animals and methods to create recipient animals for spermatogonial stem cell transplantation through modulation of the NANOS gene. In one embodiment genome editing issued to create animals with insertions or deletions (indels) that inactivate or otherwise modulate NANOS gene activity so that resulting males lack functional germ cells yet retain functional somatic cells, and females are fertile. These males can then be transplanted with donor spermatogonial stem cells and used for breeding.

Loading Washington State University collaborators
Loading Washington State University collaborators