Tokyo, Japan
Tokyo, Japan

Waseda University , abbreviated as Sōdai , is a private university mainly located in Shinjuku, Tokyo, Japan. As the second private university to be founded in Japan, Waseda University is considered to be one of Japan's most prestigious universities, consistently ranking amongst the top universities in Japanese university rankings. The university has many notable alumni in Japan, with seven Prime Ministers of Japan and many CEOs, including Tadashi Yanai, the CEO of UNIQLO.Established in 1882 as the Tōkyō Senmon Gakkō or Tōkyō College by Ōkuma Shigenobu, the school was renamed Waseda University in 1902 after the founder's hometown village. The university consists of 13 undergraduate schools and 23 graduate schools, and is one of the 13 universities in the Japanese Ministry of Education, Culture, Sports, Science and Technology's "Global 30" Project.The university holds a memorandum of agreement with Cambridge University, the University of Hong Kong, and Yale University among its 432 partnership institutions in 79 countries. Wikipedia.


Time filter

Source Type

Patent
Mitsubishi Group and Waseda University | Date: 2016-10-11

A mobile robot 1 having a plurality of kinds of moving forms includes a body unit 11 having a front face and a back face, four limb units 12 having a plurality of limb-side drive shafts, and front end tools 13 provided on a front end side of the limb units 12. A base end side of the limb unit 12 is connected to the body unit 11. The four limb units 12 are the same units. The body unit 11 and the four limb units 12 are movable by switching a front face side and a back face side so that a moving operation of the front face side and a moving operation of the back face side are symmetrical across the center of a thickness direction of the body unit 11.


Patent
Waseda University and Nissan Chemical Industries Ltd. | Date: 2016-03-09

A ion-conductive fused-ring quinone polymer includes recurring units of formula (1) and/or (2) below wherein each X is independently a single bond or a divalent group, and A^(1 )and A^(2 )are each independently an aromatic hydrocarbon ring or an oxygen atom or sulfur atom-containing aromatic heterocycle that forms together with two carbon atoms on a benzoquinone skeleton. This polymer is a material having charge-storing properties which, when used as an electrode active material, is capable of providing a high-performance battery possessing high capacity, high rate characteristics and high cycle characteristics.


Patent
Waseda University and Nissan Chemical Industries Ltd. | Date: 2016-03-09

Materials having charge-storing properties and made variously of dipyridine-fused benzoquinones of formula (1) below or derivatives thereof, dipyridine-fused benzoquinones of formula (4) below or derivatives thereof, or dipyridine-fused benzoquinone skeleton-containing polymers are provided. In the formulas, Ar^(1 )and Ar^(2 )are each independently a pyridine ring that forms together with two carbon atoms on a benzoquinone skeleton, or a derivative thereof. When used as electrode active materials, these charge storage materials are capable of providing high-performance batteries possessing a high capacity, high rate characteristics and high cycle characteristics.


Patent
MItsubishi Electric and Waseda University | Date: 2017-01-04

A measurement apparatus (100) comprising a three-dimensional point cloud model memory unit (199) for storing a three-dimensional point cloud model including a point cloud each showing a three-dimensional position; an image displaying unit (341) for displaying an image captured by a camera on a displaying device (901) and prompting a user to specify a position within the image; a measurement image point obtaining unit (342) for inputting the position within the image specified by the user as a measurement image point from an inputting device; a vector calculating unit (140) for calculating a vector showing direction from a center of the camera to the measurement image point inputted by the measurement image point obtaining unit (342); a neighborhood extracting unit (171) for extracting one neighboring point of the measurement image point from the point cloud of the three-dimensional point cloud model; a neighboring plane calculating unit (173) for calculating a particular plane including the one neighboring point extracted by the neighborhood extracting unit (171); and a feature position calculating unit (174) for calculating an intersecting point of the particular plane calculated by the neighboring plane calculating unit (173) and the vector calculated by the vector calculating unit (140) as a three-dimensional position of the measurement image point.


Patent
Waseda University, Nippon Oil Corporation, Mitsubishi Group, Hitachi Zosen Corporation and Chiyoda Corporation | Date: 2016-03-23

To provide a method and a device for condensing a water-soluble organic matter, which can collect a highly concentrated water-soluble organic matter, save energy, and reduce cost of the device by reducing a membrane area. According to the present invention, the permeability ratio of a vapor-permeation separation membrane 5 disposed at least immediately before a final outlet on a non-permeation side in the separation membrane device 52 is lower than those of the other vapor-permeation separation membranes 5 while a hybrid process combining distillation by the distillation column 2 with membrane separation by the separation membrane devices 51 and 52 including a plurality of vapor-permeation separation membranes 5 is used and energy saving performance is maintained. Therefore, a highly concentrated and condensed component of a water-soluble organic matter is obtained. In addition, it is possible to reduce a membrane area of the vapor-permeation separation membranes 5 in the whole separation membrane devices 51 and 52 and to provide a technology leading to reduction in cost of the device.


Aprile E.,Columbia University | Doke T.,Waseda University
Reviews of Modern Physics | Year: 2010

This article reviews the progress made over the last 20 years in the development and applications of liquid xenon detectors in particle physics, astrophysics, and medical imaging experiments. A summary of the fundamental properties of liquid xenon as radiation detection medium, in light of the most current theoretical and experimental information is first provided. After an introduction of the different type of liquid xenon detectors, a review of past, current, and future experiments using liquid xenon to search for rare processes and to image radiation in space and in medicine is given. Each application is introduced with a survey of the underlying scientific motivation and experimental requirements before reviewing the basic characteristics and expected performance of each experiment. Within this decade it appears likely that large volume liquid xenon detectors operated in different modes will contribute to answering some of the most fundamental questions in particle physics, astrophysics, and cosmology, fulfilling the most demanding detection challenges. From detectors based solely on liquid xenon (LXe) scintillation, such as in the MEG experiment for the search of the rare " μ→eγ " decay, currently the largest liquid xenon detector in operation, and in the XMASS experiment for dark matter detection, to the class of time projection chambers which exploit both scintillation and ionization of LXe, such as in the XENON dark matter search experiment and in the Enriched Xenon Observatory for neutrinoless double beta decay, unrivaled performance and important contributions to physics in the next few years are anticipated. © 2010 The American Physical Society.


Ishikawa H.,Waseda University
IEEE Transactions on Pattern Analysis and Machine Intelligence | Year: 2011

We introduce a transformation of general higher-order Markov random field with binary labels into a first-order one that has the same minima as the original. Moreover, we formalize a framework for approximately minimizing higher-order multilabel MRF energies that combines the new reduction with the fusion-move and QPBO algorithms. While many computer vision problems today are formulated as energy minimization problems, they have mostly been limited to using first-order energies, which consist of unary and pairwise clique potentials, with a few exceptions that consider triples. This is because of the lack of efficient algorithms to optimize energies with higher-order interactions. Our algorithm challenges this restriction that limits the representational power of the models so that higher-order energies can be used to capture the rich statistics of natural scenes. We also show that some minimization methods can be considered special cases of the present framework, as well as comparing the new method experimentally with other such techniques. © 2006 IEEE.


Patent
Waseda University | Date: 2016-08-19

A self-healing wire includes, an electric wire arranged on a substrate, and a hybrid structure in which the electric wire is covered with at least one fluid selected from the group consisting of a fluid having conductive particles dispersed therein and a fluid having metal ions dissolved therein, formed on a healing portion for a crack to be generated in the electric wire. And a stretchable device includes the self-healing wire formed on a stretchable base material and an electric element mounted only on a base material higher in rigidity than the stretchable base material. Even when a crack is generated in the electric wire due to stretching of the substrate having flexibility, the crack is bridged by the conductive particles or a solid metal deposited from the metal ions in the fluid. Thus the self-healing wire and the stretchable device having both high conductivity and high stretchability are provided.


Patent
Denso Corporation and Waseda University | Date: 2016-03-29

A parallelization compiling method for generating a segmented program from a sequential program includes assigning macro tasks included in the sequential program to cores included in the multi-core processor in order to generate the segmented program, adding a new macro task to the sequential program or deleting one of the macro tasks from the sequential program, and compiling the sequential program into the segmented program in response to the adding of the new macro task under a condition that the macro tasks assigned to the cores do not migrate among the cores or compiling the sequential program into the segmented program in response to the deleting of the one of the macro tasks under a condition that remains of the macro tasks assigned to the cores do not migrate among the cores.


Patent
Denso Corporation and Waseda University | Date: 2016-03-29

A parallelization compiling method includes analyzing a sequential program prepared for a single-core processor; dividing the sequential program into a plurality of processes based on an analysis result; and generating a parallelized program, which is subjected to a parallelized execution by a multi-core processor, from the plurality of processes. The generating of the parallelized program includes compiling the plurality of processes under an execution order restriction defined based on a predetermined parameter.

Loading Waseda University collaborators
Loading Waseda University collaborators