Entity

Time filter

Source Type


Visvader J.E.,Walter and Eliza Hall Institute of Medical Research
Cold Spring Harbor perspectives in biology | Year: 2011

An entire mammary epithelial outgrowth, capable of full secretory differentiation, may comprise the progeny of a single cellular antecedent, i.e., may be generated from a single mammary epithelial stem cell. Early studies showed that any portion of an intact murine mammary gland containing epithelium could recapitulate an entire mammary epithelial tree on transplantation into an epithelium-free mammary fat pad. More recent studies have shown that a hierarchy of mammary stem/progenitor cells exists among the mammary epithelium and that their behavior and maintenance is dependent on signals generated both locally and systemically. In this review, we have attempted to develop the scientific saga surrounding the discovery and characterization of the murine mammary stem/progenitor cell hierarchy and to suggest further approaches that will enhance our knowledge and understanding of these cells and their role in both normal development and neoplasia. Source


BH3-only proteins trigger the stress apoptosis pathway and chemical mimetics have great potential for cancer therapy. BH3-only proteins inhibit antiapoptotic members of the Bcl-2 family. Promising BH3 mimetic ABT-737 and the related orally available compound ABT-263 (navitoclax) bind avidly to antiapoptotic Bcl-2, Bcl-xL, and Bcl-w. However, their interaction with Bcl-xL provokes thrombocytopenia, which has proven to be the dose-limiting toxicity. We have tested the efficacy of ABT-199, a new Bcl-2-specific BH3 mimetic, against aggressive progenitor cell lymphomas derived from bitransgenic myc/bcl-2 mice. As a single agent, ABT-199 was as effective as ABT-737 in prolonging survival of immunocompetent tumor-bearing mice without causing thrombocytopenia. Both drugs acted rapidly but, contrary to prevailing models, their apoptotic activity did not rely upon the BH3-only protein Bim. When ABT-737 was combined with the proteosome inhibitor bortezomib or CDK inhibitor purvalanol, many treated animals achieved long-term remission. Source


Murphy J.M.,Walter and Eliza Hall Institute of Medical Research
EMBO reports | Year: 2014

When our time comes to die most people would probably opt for a quick, peaceful and painless exit. But the manner and timing are rarely under our direct control. Hence the Ars moriendi, literally, "The Art of Dying", two texts written in Latin around the 15th century that offered advice on how to die well according to the Christian ideals of the time. In contrast, for individual cells, the death process is frequently under their control and several signaling pathways that cause cell death, including apoptosis, pyroptosis and necroptosis, have been described. Furthermore the manner in which cells die can have good or bad consequences for the organism. In this review we will discuss how cells die via the necroptotic signaling pathway, with emphasis on recent structural work and place this work in a biological context by discussing relevant studies with knock-out animals. Source


Ma S.B.,Walter and Eliza Hall Institute of Medical Research
Cell Death and Differentiation | Year: 2014

In non-apoptotic cells, Bak constitutively resides in the mitochondrial outer membrane. In contrast, Bax is in a dynamic equilibrium between the cytosol and mitochondria, and is commonly predominant in the cytosol. In response to an apoptotic stimulus, Bax and Bak change conformation, leading to Bax accumulation at mitochondria and Bak/Bax oligomerization to form a pore in the mitochondrial outer membrane that is responsible for cell death. Using blue native-PAGE to investigate how Bax oligomerizes in the mitochondrial outer membrane, we observed that, like Bak, a proportion of Bax that constitutively resides at mitochondria associates with voltage-dependent anion channel (VDAC)2 prior to an apoptotic stimulus. During apoptosis, Bax dissociates from VDAC2 and homo-oligomerizes to form high molecular weight oligomers. In cells that lack VDAC2, constitutive mitochondrial localization of Bax and Bak was impaired, suggesting that VDAC2 has a role in Bax and Bak import to, or stability at, the mitochondrial outer membrane. However, following an apoptotic stimulus, Bak and Bax retained the ability to accumulate at VDAC2-deficient mitochondria and to mediate cell death. Silencing of Bak in VDAC2-deficient cells indicated that Bax required either VDAC2 or Bak in order to translocate to and oligomerize at the mitochondrial outer membrane to efficiently mediate apoptosis. In contrast, efficient Bak homo-oligomerization at the mitochondrial outer membrane and its pro-apoptotic function required neither VDAC2 nor Bax. Even a C-terminal mutant of Bax (S184L) that localizes to mitochondria did not constitutively target mitochondria deficient in VDAC2, but was recruited to mitochondria following an apoptotic stimulus dependent on Bak or upon over-expression of Bcl-xL. Together, our data suggest that Bax localizes to the mitochondrial outer membrane via alternate mechanisms, either constitutively via an interaction with VDAC2 or after activation via interaction with Bcl-2 family proteins.Cell Death and Differentiation advance online publication, 22 August 2014; doi:10.1038/cdd.2014.119. Source


McCormack M.P.,Walter and Eliza Hall Institute of Medical Research
Blood | Year: 2013

Lmo2 is an oncogenic transcription factor that is frequently overexpressed in T-cell acute lymphoblastic leukemia (T-ALL), including early T-cell precursor ALL (ETP-ALL) cases with poor prognosis. Lmo2 must be recruited to DNA by binding to the hematopoietic basic helix-loop-helix factors Scl/Tal1 or Lyl1. However, it is unknown which of these factors can mediate the leukemic activity of Lmo2. To address this, we have generated Lmo2-transgenic mice lacking either Scl or Lyl1 in the thymus. We show that although Scl is dispensable for Lmo2-driven leukemia, Lyl1 is critical for all oncogenic functions of Lmo2, including upregulation of a stem cell-like gene signature, aberrant self-renewal of thymocytes, and subsequent generation of T-cell leukemia. Lyl1 expression is restricted to preleukemic and leukemic stem cell populations in this model, providing a molecular explanation for the stage-specific expression of the Lmo2-induced gene expression program. Moreover, LMO2 and LYL1 are coexpressed in ETP-ALL patient samples, and LYL1 is required for growth of ETP-ALL cell lines. Thus, the LMO2-LYL1 interaction is a promising therapeutic target for inhibiting self-renewing cancer stem cells in T-ALL, including poor-prognosis ETP-ALL cases. Source

Discover hidden collaborations