Entity

Time filter

Source Type

Piscataway, NJ, United States

Savalia D.,Waksman Institute for Microbiology | Savalia D.,The New School | Robins W.,University of Texas at Austin | Nechaev S.,Waksman Institute for Microbiology | And 4 more authors.
Journal of Molecular Biology | Year: 2010

Bacteriophage T7 relies on its own RNA polymerase (RNAp) to transcribe its middle and late genes. Early genes, which include the viral RNAp gene, are transcribed by the host RNAp from three closely spaced strong promoters-A1, A2, and A3. One middle T7 gene product, gp2, is a strong inhibitor of the host RNAp. Gp2 is essential and is required late in infection, during phage DNA packaging. Here, we explore the role of gp2 in controlling host RNAp transcription during T7 infection. We demonstrate that in the absence of gp2, early viral transcripts continue to accumulate throughout the infection. Decreasing transcription from early promoter A3 is sufficient to make gp2 dispensable for phage infection. Gp2 also becomes dispensable when an antiterminating element boxA, located downstream of early promoters, is deleted. The results thus suggest that antiterminated transcription by host RNAp from the A3 promoter is interfering with phage development and that the only essential role for gp2 is to prevent this transcription. © 2010 Elsevier Ltd. Source


Berdygulova Z.,Waksman Institute for Microbiology | Berdygulova Z.,National Center for Biotechnology of Republic of Kazakhstan | Westblade L.F.,Rockefeller University | Florens L.,Stowers Institute for Medical Research | And 10 more authors.
Journal of Molecular Biology | Year: 2011

Regulation of gene expression during infection of the thermophilic bacterium Thermus thermophilus HB8 with the bacteriophage P23-45 was investigated. Macroarray analysis revealed host transcription shut-off and identified three temporal classes of phage genes; early, middle and late. Primer extension experiments revealed that the 5′ ends of P23-45 early transcripts are preceded by a common sequence motif that likely defines early viral promoters. T. thermophilus HB8 RNA polymerase (RNAP) recognizes middle and late phage promoters in vitro but does not recognize early promoters. In vivo experiments revealed the presence of rifampicin-resistant RNA polymerizing activity in infected cells responsible for early transcription. The product of the P23-45 early gene 64 shows a distant sequence similarity with the largest, catalytic subunits of multisubunit RNAPs and contains the conserved metal-binding motif that is diagnostic of these proteins. We hypothesize that ORF64 encodes rifampicin-resistant phage RNAP that recognizes early phage promoters. Affinity isolation of T. thermophilus HB8 RNAP from P23-45-infected cells identified two phage-encoded proteins, gp39 and gp76, that bind the host RNAP and inhibit in vitro transcription from host promoters, but not from middle or late phage promoters, and may thus control the shift from host to viral gene expression during infection. To our knowledge, gp39 and gp76 are the first characterized bacterial RNAP-binding proteins encoded by a thermophilic phage. © 2010 Elsevier Ltd All rights reserved. Source


Pavlova O.,Waksman Institute for Microbiology | Lavysh D.,Russian Academy of Sciences | Klimuk E.,Russian Academy of Sciences | Djordjevic M.,University of Belgrade | And 6 more authors.
Journal of Molecular Biology | Year: 2012

Escherichia coli phage phiEco32 encodes two proteins that bind to host RNA polymerase (RNAP): gp79, a novel protein, and gp36, a distant homolog of σ 70 family proteins. Here, we investigated the temporal pattern of phiEco32 and host gene expression during infection. Host transcription shutoff and three distinct bacteriophage temporal gene classes (early, middle, and late) were revealed. A combination of bioinformatic and biochemical approaches allowed identification of phage promoters recognized by a host RNAP holoenzyme containing the σ 70 factor. These promoters are located upstream of early phage genes. A combination of macroarray data, primer extension, and in vitro transcription analyses allowed identification of six promoters recognized by an RNAP holoenzyme containing gp36. These promoters are characterized by a single-consensus element tAATGTAtA and are located upstream of the middle and late phage genes. Curiously, gp79, an inhibitor of host and early phage transcription by σ 70 holoenzyme, activated transcription by the gp36 holoenzyme in vitro. © 2012 Elsevier Ltd. All rights reserved. Source

Discover hidden collaborations