Gaillimh, Ireland
Gaillimh, Ireland

Time filter

Source Type

Sanami M.,Vornia Biomaterials Ltd. | Sanami M.,University of Bolton | Shtein Z.,Vornia Biomaterials Ltd. | Shtein Z.,Hebrew University of Jerusalem | And 11 more authors.
Biomedical Materials (Bristol) | Year: 2015

Collagen type I, in various physical forms, is widely used in tissue engineering and regenerative medicine. To control the mechanical properties and biodegradability of collagen-based devices, exogenous cross-links are introduced into the 3D supramolecular structure. However, potent cross-linking methods are associated with cytotoxicity, whilst mild cross-linking methods are associated with suboptimal mechanical resilience. Herein, we assessed the influence of resilin, a super-elastic and highly stretchable protein found within structures in arthropods where energy storage and long-range elasticity are needed, on the biophysical and biological properties of mildly cross-linked extruded collagen fibres. The addition of resilin-like protein in the 4-arm poly(ethylene glycol) ether tetrasuccinimidyl glutarate cross-linked collagen fibres resulted in a significant increase of stress and strain at break values and a significant decrease of modulus values. The addition of resilin-like protein did not compromise cell metabolic activity and DNA concentration. All groups are supported parallel to the longitudinal fibre axis cell orientation. Herein we provide evidence that the addition of resilin-like protein in mildly cross-linked collagen fibres improves their biomechanical properties, without jeopardising their biological properties. © 2015 IOP Publishing Ltd.


Sanami M.,Vornia Biomaterials Ltd. | Sanami M.,University of Bolton | Sweeney I.,Vornia Biomaterials Ltd. | Sweeney I.,University of Bolton | And 12 more authors.
Journal of Biomedical Materials Research - Part B Applied Biomaterials | Year: 2016

Various chemical, natural, or synthetic in origin, crosslinking methods have been proposed over the years to stabilise collagen fibers. However, an optimal method has yet to be identified. Herein, we ventured to assess the potential of 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate, as opposed to glutaraldehyde (GTA), genipin and carbodiimide, on the structural, physical and biological properties of collagen fibers. The 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate induced an intermedium surface smoothness, denaturation temperature and swelling. The 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate fibers had significantly higher stress at break values than the carbodiimide fibers, but significantly lower than the GTA and genipin fibers. With respect to strain at break, no significant difference was observed among the crosslinking treatments. The 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate fibers exhibited significantly higher cell metabolic activity and DNA concentration that all other crosslinking treatments, promoted consistently cellular elongation along the longitudinal fiber axis and by day 7 they were completely covered by cells. Collectively, this work clearly demonstrates the potential of 4-star poly(ethylene glycol) ether tetrasuccinimidyl glutarate as collagen crosslinker. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 914–922, 2016. © 2015 Wiley Periodicals, Inc.

Loading Vornia Biomaterials Ltd. collaborators
Loading Vornia Biomaterials Ltd. collaborators